Part Number Hot Search : 
TK11812 01500 P4SMAJ70 262HOP HE80128M INDR165B UC2844AN ER106
Product Description
Full Text Search
 

To Download XC6VCX195T Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 48
www..com Virtex-6 CXT Family Data Sheet
DS153 (v1.1) February 5, 2010
Advance Product Specification
General Description
Virtex(R)-6 CXT FPGAs provide designers needing power-optimized 3.75 Gb/s transceiver performance with an optimized ratio of built-in system-level blocks. These include 36 Kb block RAM/FIFOs, up to 15 Mb of block RAM, up to 768 DSP48E1 slices, enhanced mixed-mode clock management blocks, PCI Express(R) (GEN 1) compatible integrated blocks, a tri-mode Ethernet media access controller (MAC), up to 241K logic cells, and strong IP support. Using the third generation ASMBLTM (Advanced Silicon Modular Block) column-based architecture, the Virtex-6 CXT family also contains SelectIOTM technology with built-in digitally controlled impedance, ChipSyncTM source-synchronous interface blocks, enhanced mixed-mode clock management blocks, and advanced configuration options. Customers needing higher transceiver speeds, greater I/O performance, additional Ethernet MACs, or greater capacity should instead use the Virtex-6 LXT or SXT families. Built on a 40 nm state-of-the-art copper process technology, Virtex-6 CXT FPGAs are a programmable alternative to custom ASIC technology. Virtex-6 CXT FPGAs are the programmable silicon foundation for Targeted Design Platforms that deliver integrated software and hardware components to enable designers to focus on innovation as soon as their development cycle begins.
Summary of Virtex-6 CXT FPGA Features
* Advanced, high-performance, FPGA Logic - Real 6-input look-up table (LUT) technology - Dual LUT5 (5-input LUT) option - LUT/dual flip-flop pair for applications requiring rich register mix - Improved routing efficiency - 64-bit (or 32 x 2-bit) distributed LUT RAM option - SRL32/dual SRL16 with registered outputs option Powerful mixed-mode clock managers (MMCM) - MMCM blocks provide zero-delay buffering, frequency synthesis, clock-phase shifting, input-jitter filtering, and phase-matched clock division 36-Kb block RAM/FIFOs - Dual-port RAM blocks - Programmable Dual-port widths up to 36 bits Simple dual-port widths up to 72 bits - Enhanced programmable FIFO logic - Built-in optional error-correction circuitry - Optionally use each block as two independent 18 Kb blocks High-performance parallel SelectIO technology - 1.2 to 2.5V I/O operation - Source-synchronous interfacing using ChipSyncTM technology - Digitally controlled impedance (DCI) active termination - Flexible fine-grained I/O banking - High-speed memory interface support with integrated write-leveling capability * Advanced DSP48E1 slices - 25 x 18, two's complement multiplier/accumulator - Optional pipelining - New optional pre-adder to assist filtering applications - Optional bitwise logic functionality - Dedicated cascade connections Flexible configuration options - SPI and Parallel Flash interface - Multi-bitstream support with dedicated fallback reconfiguration logic - Automatic bus width detection Integrated interface blocks for PCI Express designs - Designed to the PCI Express Base Specification 1.1 - Gen1 Endpoint (2.5 Gb/s) support with GTX transceivers - x1, x2, x4, or x8 lane support per block - One virtual channel, eight traffic classes GTX transceivers: 150 Mb/s to 3.75 Gb/s Integrated 10/100/1000 Mb/s Ethernet MAC block - Supports 1000BASE-X PCS/PMA and SGMII using GTX transceivers - Supports MII, GMII, and RGMII using SelectIO technology resources 40 nm copper CMOS process technology 1.0V core voltage Two speed grades (-1 and -2) Two temperature grades (commercial and industrial) High signal-integrity flip-chip packaging available in standard or Pb-free package options Compatibility across sub-families: CXT, LXT, and SXT devices are footprint compatible in the same package
*
*
*
*
* *
*
* * * * * *
(c) 2009-2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 1
Virtex-6 CXT Family Data Sheet
Virtex-6 CXT FPGA Feature Summary
Table 1: Virtex-6 CXT FPGA Feature Summary by Device
Configurable Logic Blocks (CLBs) Device Logic Cells Slices(1) Max Distributed RAM (Kb) DSP48E1 Slices(2) Block RAM Blocks MMCMs(4) 18 Kb(3) 36 Kb Max (Kb)
www..com
Interface Maximum Ethernet Blocks for GTX MACs(5) PCI Express Transceivers
Total I/O Banks(6)
Max User I/O(7)
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
74,496 128,000 199,680 241,152
11,640 20,000 31,200 37,680
1,045 1,740 3,040 3,650
288 480 640 768
312 528 688 832
156 264 344 416
5,616 9,504 12,384 14,976
6 10 10 12
1 2 2 2
1 1 1 1
12 16 16 16
9 15 15 18
360 600 600 600
Notes: 1. Each Virtex-6 FPGA slice contains four LUTs and eight flip-flops, only some slices can use their LUTs as distributed RAM or SRLs. 2. Each DSP48E1 slice contains a 25 x 18 multiplier, an adder, and an accumulator. 3. Block RAMs are fundamentally 36 Kbits in size. Each block can also be used as two independent 18 Kb blocks. 4. Each CMT contains two mixed-mode clock managers (MMCM). 5. This table lists individual Ethernet MACs per device. 6. Does not include configuration Bank 0. 7. This number does not include GTX transceivers.
Virtex-6 CXT FPGA Device-Package Combinations and Maximum I/Os
Virtex-6 CXT FPGA package combinations with the maximum available I/Os per package are shown in Table 2. Table 2: Virtex-6 CXT FPGA Device-Package Combinations and Maximum Available I/Os
Package Size (mm) Device XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T Notes: 1. Flip-chip packages are also available in Pb-Free versions (FFG). GTs 8 GTXs 8 GTXs FF484 FFG484 23 x 23 I/O 240 240 GTs 12 GTXs 12 GTXs 12 GTXs 12 GTXs FF784 FFG784 29 x 29 I/O 360 400 400 400 16 GTXs 16 GTXs 16 GTXs 600 600 600 GTs FF1156 FFG1156 35 x 35 I/O
Virtex-6 CXT FPGA Ordering Information
The Virtex-6 CXT FPGA ordering information shown in Figure 1 applies to all packages including Pb-Free.
X-Ref Target - Figure 1
Example: XC6VCX240T-1FFG1156C
Device Type Speed Grade (-1, -2) Temperature Range: C = Commercial (TJ = 0C to +85C) I = Industrial (TJ = -40C to +100C) Number of Pins Pb-Free Package Type
DS153_01_062109
Figure 1: Virtex-6 CXT FPGA Ordering Information
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 2
Virtex-6 CXT Family Data Sheet
Virtex-6 CXT FPGA Documentation
www..com
In addition to the data sheet information found herein, complete and up-to-date documentation of the Virtex-6 family of FPGAs is available on the Xilinx website and available for download: Virtex-6 FPGA Configuration Guide (UG360) This all-encompassing configuration guide includes chapters on configuration interfaces (serial and parallel), multi-bitstream management, bitstream encryption, boundary-scan and JTAG configuration, and reconfiguration techniques. Virtex-6 FPGA SelectIO Resources User Guide (UG361) This guide describes the SelectIOTM resources available in all the Virtex-6 devices. Virtex-6 FPGA Clocking Resources User Guide (UG362) This guide describes the clocking resources available in all the Virtex-6 devices, including the MMCM and clock buffers. Virtex-6 FPGA Memory Resources User Guide (UG363) This guide describes the Virtex-6 device block RAM and FIFO capabilities. Virtex-6 FPGA CLB User Guide (UG364) This guide describes the capabilities of the configurable logic blocks (CLB) available in all Virtex-6 devices. Virtex-6 FPGA DSP48E1 Slice User Guide (UG369) This guide describes the architecture of the DSP48E1 slice in Virtex-6 FPGAs and provides configuration examples. Virtex-6 FPGA GTX Transceivers User Guide (UG366) This guide describes the GTX transceivers available in all the Virtex-6 CXT FPGAs. Virtex-6 FPGA Tri-Mode Ethernet MAC User Guide (UG368) This guide describes the dedicated tri-mode Ethernet media access controller (TEMAC) available in all the Virtex-6 CXT FPGAs. Virtex-6 FPGA Data Sheet: DC and Switching Characteristics (DS152) Reference this data sheet when considering device migration to the Virtex-6 LXT and SXT families. It contains the DC and Switching Characteristic specifications specifically for the Virtex-6 LXT and SXT families. Virtex-6 FPGA Packaging and Pinout Specifications (UG365) These specifications includes the tables for device/package combinations and maximum I/Os, pin definitions, pinout tables, pinout diagrams, mechanical drawings, and thermal specifications of the Virtex-6 LXT and SXT families. Reference these specifications when considering device migration to the Virtex-6 LXT and SXT families.
Configuration Bitstream Overview for CXT Devices
This section contains two tables similar to those in the Virtex-6 FPGA Configuration Guide only updated for the CXT family. The Virtex-6 FPGA bitstream contains commands to the FPGA configuration logic as well as configuration data. Table 3 gives a typical bitstream length and Table 4 gives the specific device ID codes for the Virtex-6 CXT devices. Table 3: Virtex-6 CXT FPGA Bitstream Length
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Table 4: Virtex-6 FPGA Device ID Codes
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Total Number of Configuration Bits
26,239,328 43,719,776 61,552,736 73,859,552
ID Code (Hex)
0x042C4093 0x042CA093 0x042CC093 0x042D0093
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 3
Virtex-6 CXT Family Data Sheet
CLB Overview for CXT Devices
www..com
Table 5, updated specifically for the CXT family from a similar table in the Virtex-6 FPGA CLB User Guide, shows the available resources in all Virtex-6 FPGA CLBs. Table 5: Virtex-6 CXT FPGA Logic Resources Available in All CLBs
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Total Slices
11,640 20,000 31,200 37,680
SLICELs SLICEMs
7,460 13,040 19,040 23,080 4,180 6,960 12,160 14,600
Number of 6-Input LUTs
46,560 80,000 124,800 150,720
Maximum Distributed RAM (Kb)
1045 1740 3140 3770
Shift Register (Kb)
522.5 870 1570 1885
Number of Flip-Flops
93,120 160,000 249,600 301,440
Regional Clock Management for CXT Devices
Table 6, updated from the Virtex-6 FPGA Clocking Resources User Guide specifically for the CXT family, shows the number of clock regions in all Virtex-6 CXT FPGA CLBs. Table 6: Virtex-6 CXT FPGA Clock Regions
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Number of Clock Regions
6 10 10 12
CXT Packaging Specifications
Table 7, updated from the Virtex-6 FPGA Packaging and Pinout Specifications specifically for the CXT family, shows the number of GTX transceiver I/O channels. Table 8 shows the number of available I/Os and the number of differential I/O pairs for each Virtex-6 device/package combination. Table 7: Number of Serial Transceivers (GTs) I/O Channels/Device
I/O Channels
MGTRXP MGTRXN MGTTXP MGTTXN Notes:
1. 2. 3. 4. The XC6VCX75T has 8 GTX I/O channels in the FF484/FFG484 package and 12 GTX I/O channels in the FF784/FFG784 package. The XC6VCX130T has 8 GTX I/O channels in the FF484/FFG484 package, 12 GTX I/O channels in the FF784/FFG784 package, and 16 GTX I/O channels in the FF1156/FFG1156 package. The XC6VCX195T has 12 GTX I/O channels in the FF784/FFG784 package and 16 GTX I/O channels in the FF1156/FFG1156 package. The XC6VCX240T has 12 GTX I/O channels in the FF784/FFG784 package and 16 GTX I/O channels in the FF1156/FFG1156 package.
Device CX75T(1)
8 or 12 8 or 12 8 or 12 8 or 12
CX130T(2)
8, 12, or 16 8, 12, or 16 8, 12, or 16 8, 12, or 16
CX195T(3)
12 or 16 12 or 16 12 or 16 12 or 16
CX240T(4)
12 or 16 12 or 16 12 or 16 12 or 16
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 4
Virtex-6 CXT Family Data Sheet
Table 8: Available I/O Pin/Device/Package Combinations
Virtex-6 CXT Device User I/O Pins
FF484 Available User I/Os XC6VCX75T Differential I/O Pairs Available User I/Os XC6VCX130T Differential I/O Pairs Available User I/Os XC6VCX195T Differential I/O Pairs Available User I/Os XC6VCX240T Differential I/O Pairs
- - -
www..com
Virtex-6 CXT FPGA Package
FF784 360 180 400 200 400 200 400 200 FF1156
- -
240 120 240 120
-
600 300 600 300 600 300
GTX Transceivers in CXT Devices
CXT devices have between 8 to 16 gigabit transceiver circuits. Each GTX transceiver is a combined transmitter and receiver capable of operating at a data rate between 155 Mb/s and 3.75 Gb/s. The transmitter and receiver are independent circuits that use separate PLLs to multiply the reference frequency input by certain programmable numbers between 2 and 25, to become the bit-serial data clock. Each GTX transceiver has a large number of user-definable features and parameters. All of these can be defined during device configuration, and many can also be modified during operation
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 5
Virtex-6 CXT Family Data Sheet
FF484 Package Placement Diagrams
X-Ref Target - Figure 2 X-Ref Target - Figure 3
www..com
Figure 2 and Figure 3 show the placement diagrams for the GTX transceivers in the FF484 package.
B1 B2 CX75T: GTXE1_X0Y7 CX130T: GTXE1_X0Y15 D1 D2 MGTTXP3_115 MGTTXN3_115 MGTRXP3_115 MGTRXN3_115 CX75T: GTXE1_X0Y3 CX130T: GTXE1_X0Y11 M1 M2 MGTTXP3_114 MGTTXN3_114 W3 W4 MGTRXP3_114 MGTRXN3_114
C3 C4 CX75T: GTXE1_X0Y6 CX130T: GTXE1_X0Y14 F1 F2 J4 J3 QUAD_115 L4 L3 E3 E4 CX75T: GTXE1_X0Y5 CX130T: GTXE1_X0Y13 H1 H2
MGTRXP2_115 MGTRXN2_115 CX75T: GTXE1_X0Y2 CX130T: GTXE1_X0Y10 MGTTXP2_115 MGTTXN2_115
Y1 Y2
MGTRXP2_114 MGTRXN2_114
P1 P2 R4 R3 QUAD_114
MGTTXP2_114 MGTTXN2_114
MGTREFCLK1P_115 MGTREFCLK1N_115
MGTREFCLK1P_114 MGTREFCLK1N_114
MGTREFCLK0P_115 MGTREFCLK0N_115
U4 U3 AA3 AA4 CX75T: GTXE1_X0Y1 CX130T: GTXE1_X0Y9
MGTREFCLK0P_114 MGTREFCLK0N_114
MGTRXP1_115 MGTRXN1_115
MGTRXP1_114 MGTRXN1_114
MGTTXP1_115 MGTTXN1_115
T1 T2
MGTTXP1_114 MGTTXN1_114
G3 G4 CX75T: GTXE1_X0Y4 CX130T: GTXE1_X0Y12 K1 K2
MGTRXP0_115 MGTRXN0_115 CX75T: GTXE1_X0Y0 CX130T: GTXE1_X0Y8 MGTTXP0_115 MGTTXN0_115
ds153_10_101209
AB1 AB2
MGTRXP0_114 MGTRXN0_114
V1 V2
MGTTXP0_114 MGTTXN0_114
ds153_03_020210
Figure 2: Placement Diagram for the FF484 Package (1 of 2)
Figure 3: Placement Diagram for the FF484 Package (2 of 2)
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 6
Virtex-6 CXT Family Data Sheet
FF784 Package Placement Diagrams
X-Ref Target - Figure 4 X-Ref Target - Figure 5
www..com
Figure 4 through Figure 6 show the placement diagrams for the GTX transceivers in the FF784 package.
A3 CX75T: GTXE1_X0Y11 CX130T: GTXE1_X0Y19 CX195T: GTXE1_X0Y19 CX240T: GTXE1_X0Y19 A4 MGTRXP3_116 MGTRXN3_116 CX75T: GTXE1_X0Y7 CX130T: GTXE1_X0Y15 CX195T: GTXE1_X0Y15 CX240T: GTXE1_X0Y15 L3 L4 MGTRXP3_115 MGTRXN3_115
D1 D2
MGTTXP3_116 MGTTXN3_116
M1 M2
MGTTXP3_115 MGTTXN3_115
B1 CX75T: GTXE1_X0Y10 CX130T: GTXE1_X0Y18 CX195T: GTXE1_X0Y18 CX240T: GTXE1_X0Y18 B2
MGTRXP2_116 MGTRXN2_116 CX75T: GTXE1_X0Y6 CX130T: GTXE1_X0Y14 CX195T: GTXE1_X0Y14 CX240T: GTXE1_X0Y14
N3 N4
MGTRXP2_115 MGTRXN2_115
F1 F2 G4 G3
MGTTXP2_116 MGTTXN2_116
P1 P2 P6 P5
MGTTXP2_115 MGTTXN2_115
MGTREFCLK1P_116 MGTREFCLK1N_116 QUAD_115
MGTREFCLK1P_115 MGTREFCLK1N_115
QUAD_116 J4 J3 C3 CX75T: GTXE1_X0Y9 CX130T: GTXE1_X0Y17 CX195T: GTXE1_X0Y17 CX240T: GTXE1_X0Y17 C4 MGTREFCLK0P_116 MGTREFCLK0N_116
T6 T5 R3 CX75T: GTXE1_X0Y5 CX130T: GTXE1_X0Y13 CX195T: GTXE1_X0Y13 CX240T: GTXE1_X0Y13 R4
MGTREFCLK0P_115 MGTREFCLK0N_115
MGTRXP1_116 MGTRXN1_116
MGTRXP1_115 MGTRXN1_115
H1 H2
MGTTXP1_116 MGTTXN1_116
T1 T2
MGTTXP1_115 MGTTXN1_115
E3 CX75T: GTXE1_X0Y8 CX130T: GTXE1_X0Y16 CX195T: GTXE1_X0Y16 CX240T: GTXE1_X0Y16 E4
MGTRXP0_116 MGTRXN0_116 CX75T: GTXE1_X0Y4 CX130T: GTXE1_X0Y12 CX195T: GTXE1_X0Y12 CX240T: GTXE1_X0Y12
U3 U4
MGTRXP0_115 MGTRXN0_115
K1 K2
MGTTXP0_116 MGTTXN0_116
ds153_04_020210
V1 V2
MGTTXP0_115 MGTTXN0_115
ds153_05_020210
Figure 4: Placement Diagram for the FF784 Package (1 of 3)
Figure 5: Placement Diagram for the FF784 Package (2 of 3)
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 7
Virtex-6 CXT Family Data Sheet
X-Ref Target - Figure 6
www..com
AC3 MGTRXP3_114 MGTRXN3_114 AC4
CX75T: GTXE1_X0Y3 CX130T: GTXE1_X0Y11 CX195T: GTXE1_X0Y11 CX240T: GTXE1_X0Y11
Y1 Y2
MGTTXP3_114 MGTTXN3_114
AE3 CX75T: GTXE1_X0Y2 CX130T: GTXE1_X0Y10 CX195T: GTXE1_X0Y10 CX240T: GTXE1_X0Y10 AE4
MGTRXP2_114 MGTRXN2_114
AB1 AB2 W4 W3
MGTTXP2_114 MGTTXN2_114
MGTREFCLK1P_114 MGTREFCLK1N_114
QUAD_114 AA4 AA3 AG3 CX75T: GTXE1_X0Y0 CX130T: GTXE1_X0Y9 CX195T: GTXE1_X0Y9 CX240T: GTXE1_X0Y9 AG4 MGTREFCLK0P_114 MGTREFCLK0N_114
MGTRXP1_114 MGTRXN1_114
AD1 AD2
MGTTXP1_114 MGTTXN1_114
AH1 CX75T: GTXE1_X0Y0 CX130T: GTXE1_X0Y8 CX195T: GTXE1_X0Y8 CX240T: GTXE1_X0Y8 AH2
MGTRXP0_114 MGTRXN0_114
AF1 AF2
MGTTXP0_114 MGTTXN0_114
ds153_06_020210
Figure 6: Placement Diagram for the FF784 Package (3 of 3)
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 8
Virtex-6 CXT Family Data Sheet
FF1156 Package Placement Diagrams
X-Ref Target - Figure 7 X-Ref Target - Figure 8
www..com
Figure 7 through Figure 10 show the placement diagrams for the GTX transceivers in the FF1156 package.
B5 CX130T: GTXE1_X0Y15 CX195T: GTXE1_X0Y15 CX240T: GTXE1_X0Y15 B6 MGTRXP3_116 MGTRXN3_116 CX130T: GTXE1_X0Y11 CX195T: GTXE1_X0Y11 CX240T: GTXE1_X0Y11 J3 J4 MGTRXP3_115 MGTRXN3_115
A3 A4
MGTTXP3_116 MGTTXN3_116
F1 F2
MGTTXP3_115 MGTTXN3_115
D5 CX130T: GTXE1_X0Y14 CX195T: GTXE1_X0Y14 CX240T: GTXE1_X0Y14 D6
MGTRXP2_116 MGTRXN2_116 CX130T: GTXE1_X0Y10 CX195T: GTXE1_X0Y10 CX240T: GTXE1_X0Y10
K5 K6
MGTRXP2_115 MGTRXN2_115
B1 B2 F6 F5
MGTTXP2_116 MGTTXN2_116
H1 H2 M6 M5
MGTTXP2_115 MGTTXN2_115
MGTREFCLK1P_116 MGTREFCLK1N_116 QUAD_115
MGTREFCLK1P_115 MGTREFCLK1N_115
QUAD_116 H6 H5 E3 CX130T: GTXE1_X0Y13 CX195T: GTXE1_X0Y13 CX240T: GTXE1_X0Y13 E4 MGTREFCLK0P_116 MGTREFCLK0N_116
P6 P5 L3 CX130T: GTXE1_X0Y9 CX195T: GTXE1_X0Y9 CX240T: GTXE1_X0Y9 L4
MGTREFCLK0P_115 MGTREFCLK0N_115
MGTRXP1_116 MGTRXN1_116
MGTRXP1_115 MGTRXN1_115
C3 C4
MGTTXP1_116 MGTTXN1_116
K1 K2
MGTTXP1_115 MGTTXN1_115
G3 CX130T: GTXE1_X0Y12 CX195T: GTXE1_X0Y12 CX240T: GTXE1_X0Y12 G4
MGTRXP0_116 MGTRXN0_116 CX130T: GTXE1_X0Y8 CX195T: GTXE1_X0Y8 CX240T: GTXE1_X0Y8
N3 N4
MGTRXP0_115 MGTRXN0_115
D1 D2
MGTTXP0_116 MGTTXN0_116
ds153_07_020210
M1 M2
MGTTXP0_115 MGTTXN0_115
ds153_08_020210
Figure 7: Placement Diagram for the FF1156 Package (1 of 4)
Figure 8: Placement Diagram for the FF1156 Package (2 of 4)
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 9
Virtex-6 CXT Family Data Sheet
X-Ref Target - Figure 9
X-Ref Target - Figure 10
www..com
AC3 MGTRXP3_113 MGTRXN3_113 AC4
R3 CX130T: GTXE1_X0Y7 CX195T: GTXE1_X0Y7 CX240T: GTXE1_X0Y7 R4
MGTRXP3_114 MGTRXN3_114 CX130T: GTXE1_X0Y3 CX195T: GTXE1_X0Y3 CX240T: GTXE1_X0Y3
P1 P2
MGTTXP3_114 MGTTXN3_114
AB1 AB2
MGTTXP3_113 MGTTXN3_113
U3 CX130T: GTXE1_X0Y6 CX195T: GTXE1_X0Y6 CX240T: GTXE1_X0Y6 U4
MGTRXP2_114 MGTRXN2_114 CX130T: GTXE1_X0Y2 CX195T: GTXE1_X0Y2 CX240T: GTXE1_X0Y2
AE3 AE4
MGTRXP2_113 MGTRXN2_113
T1 T2 T6 T5
MGTTXP2_114 MGTTXN2_114
AD1 AD2 AB6 AB5
MGTTXP2_113 MGTTXN2_113
MGTREFCLK1P_114 MGTREFCLK1N_114 QUAD_113
MGTREFCLK1P_113 MGTREFCLK1N_113
QUAD_114 V6 V5 W3 CX130T: GTXE1_X0Y5 CX195T: GTXE1_X0Y5 CX240T: GTXE1_X0Y5 W4 MGTREFCLK0P_114 MGTREFCLK0N_114
AD6 AD5 AF5 CX130T: GTXE1_X0Y1 CX195T: GTXE1_X0Y1 CX240T: GTXE1_X0Y1 AF6
MGTREFCLK0P_113 MGTREFCLK0N_113
MGTRXP1_114 MGTRXN1_114
MGTRXP1_113 MGTRXN1_113
V1 V2
MGTTXP1_114 MGTTXN1_114
AF1 AF2
MGTTXP1_113 MGTTXN1_113
AA3 CX130T: GTXE1_X0Y4 CX195T: GTXE1_X0Y4 CX240T: GTXE1_X0Y4 AA4
MGTRXP0_114 MGTRXN0_114 CX130T: GTXE1_X0Y0 CX195T: GTXE1_X0Y0 CX240T: GTXE1_X0Y0
AG3 AG4
MGTRXP0_113 MGTRXN0_113
Y1 Y2
MGTTXP0_114 MGTTXN0_114
ds153_09_020210
AH1 AH2
MGTTXP0_113 MGTTXN0_113
ds153_10_020210
Figure 9: Placement Diagram for the FF1156 Package (3 of 4)
Figure 10: Placement Diagram for the FF1156 Package (4 of 4)
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 10
Virtex-6 CXT Family Data Sheet
Virtex-6 CXT FPGA Electrical Characteristics Introduction
www..com
Virtex-6 CXT FPGAs are available in -2 and -1 speed grades, with -2 having the highest performance. Virtex-6 CXT FPGA DC and AC characteristics are specified for both commercial and industrial grades. Except the operating temperature range or unless otherwise noted, all the DC and AC electrical parameters are the same for a particular speed grade (that is, the timing characteristics of a -1 speed grade industrial device are the same as for a -1 speed grade commercial device). However, only selected speed grades and/or devices might be available in the industrial range. All supply voltage and junction temperature specifications are representative of worst-case conditions. The parameters included are common to popular designs and typical applications. All specifications are subject to change without notice.
Virtex-6 CXT FPGA DC Characteristics
Table 9: Absolute Maximum Ratings
Symbol
VCCINT VCCAUX VCCO VBATT VREF VIN(3) VTS TSTG TSOL TJ
Description
Internal supply voltage relative to GND Auxiliary supply voltage relative to GND Output drivers supply voltage relative to GND Key memory battery backup supply Input reference voltage 2.5V or below I/O input voltage relative to GND(4) (user and dedicated I/Os) Voltage applied to 3-state 2.5V or below output(4) (user and dedicated I/Os) Storage temperature (ambient) Maximum soldering Maximum junction temperature(2) temperature(2) -0.5 to 1.1 -0.5 to 3.0 -0.5 to 3.0 -0.5 to 3.0 -0.5 to 3.0 -0.75 to VCCO + 0.5 -0.75 to VCCO + 0.5 -65 to 150 +220 +125
Units
V V V V V V V C C C
Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability. 2. For soldering guidelines and thermal considerations, see Virtex-6 FPGA Packaging and Pinout Specification. 3. 2.5V I/O absolute maximum limit applied to DC and AC signals. 4. For 2.5V I/O operation, refer to theVirtex-6 FPGA SelectIO Resources User Guide.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 11
Virtex-6 CXT Family Data Sheet
Table 10: Recommended Operating Conditions
Symbol
VCCINT VCCAUX VCCO(1,3,4) VIN
www..com
Description
Internal supply voltage relative to GND, TJ = 0C to +85C Auxiliary supply voltage relative to GND, TJ = 0C to +85C Supply voltage relative to GND, TJ = 0C to +85C 2.5V supply voltage relative to GND, TJ = 0C to +85C 2.5V and below supply voltage relative to GND, TJ = 0C to +85C Maximum current through any pin in a powered or unpowered bank when forward biasing the clamp diode. Battery voltage relative to GND, TJ = 0C to +85C
Min
0.95 2.375 1.14 GND - 0.20 GND - 0.20
Max
1.05 2.625 2.625 2.625 VCCO + 0.2 10
Units
V V V V V mA V
IIN VBATT(2)
1.0
2.5
Notes: 1. Configuration data is retained even if VCCO drops to 0V. 2. VBATT is required only when using bitstream encryption. If battery is not used, connect VBATT to either ground or VCCAUX. 3. Includes VCCO of 1.2V, 1.5V, 1.8V, and 2.5V. 4. The configuration supply voltage VCC_CONFIG is also known as VCCO_0 5. All voltages are relative to ground.
Table 11: DC Characteristics Over Recommended Operating Conditions
Symbol
VDRINT VDRI IREF IL CIN IRPU(1)
Description
Data retention VCCINT voltage (below which configuration data might be lost) Data retention VCCAUX voltage (below which configuration data might be lost) VREF leakage current per pin Input or output leakage current per pin (sample-tested) Input capacitance (sample-tested) Pad pull-up (when selected) @ VIN = 0V, VCCO = 2.5V Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.8V Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.5V Pad pull-up (when selected) @ VIN = 0V, VCCO = 1.2V
Data Rate
Min
Typ
Max
Units
V V A A pF A A A A A nA n
IRPD(1) IBATT(2) n r
Pad pull-down (when selected) @ VIN = 2.5V Battery supply current Temperature diode ideality factor Series resistance
Notes: 1. Typical values are specified at nominal voltage, 25C. 2. Maximum value specified for worst case process at 25C.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 12
Virtex-6 CXT Family Data Sheet
Quiescent Supply Current: Important Note
www..com
Typical values for quiescent supply current are specified at nominal voltage, 85C junction temperatures (Tj). Xilinx recommends analyzing static power consumption at Tj = 85C because the majority of designs operate near the high end of the commercial temperature range. Quiescent supply current is specified by speed grade for Virtex-6 CXT devices. Use the XPOWERTM Estimator (XPE) spreadsheet tool (download at http://www.xilinx.com/power) to calculate static power consumption for conditions other than those specified in Table 12. Table 12: Typical Quiescent Supply Current
Symbol
ICCINTQ
Description
Quiescent VCCINT supply current
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Speed and Temperature Grade -2 (C & I)
927 1563 2059 2478 1 1 1 2 45 75 113 135
Units
mA mA mA mA mA mA mA mA mA mA mA mA
-1 (C & I)
927 1563 2059 2478 1 1 1 2 45 75 113 135
ICCOQ
Quiescent VCCO supply current
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
ICCAUXQ
Quiescent VCCAUX supply current
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Notes:
1.
2. 3.
Typical values are specified at nominal voltage, 85C junction temperatures (Tj). Industrial (I) grade devices have the same typical values as commercial (C) grade devices at 85C, but higher values at 100C. Use the XPE tool to calculate 100C values.
Typical values are for blank configured devices with no output current loads, no active input pull-up resistors, all I/O pins are 3-state and floating. If DCI or differential signaling is used, more accurate quiescent current estimates can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 13
Virtex-6 CXT Family Data Sheet
Power-On Power Supply Requirements
www..com
Xilinx FPGAs require a certain amount of supply current during power-on to insure proper device initialization. The actual current consumed depends on the power-on ramp rate of the power supply. Virtex-6 CXT devices require a power-on sequence of VCCINT, VCCAUX, and VCCO. If the requirement can not be met, then VCCAUX must always be powered prior to VCCO. VCCAUX and VCCO can be powered by the same supply, therefore, both VCCAUX and VCCO are permitted to ramp simultaneously. Similarly, for the power-down sequence, VCCO must be powered down prior to VCCAUX. Table 13 shows the minimum current required by Virtex-6 devices for proper power-on and configuration. If the current minimums shown in Table 13 are met, the device powers on after all three supplies have passed through their power-on reset threshold voltages. The FPGA must be configured after VCCINT is applied. Once initialized and configured, use the XPOWER tools to estimate current drain on these supplies. Table 13: Power-On Current for Virtex-6 CXT Devices
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Notes: 1. Typical values are specified at nominal voltage, 25C.
ICCINTMIN Typ(1) Max Typ(1)
ICCAUXMIN Max Typ(1)
ICCOMIN Max
Units
mA mA mA mA
Table 14: Power Supply Ramp Time
Symbol
VCCINT VCCO VCCAUX
Description
Internal supply voltage relative to GND Output drivers supply voltage relative to GND Auxiliary supply voltage relative to GND
Ramp Time
0.20 to 50.0 0.20 to 50.0 0.20 to 50.0
Units
ms ms ms
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 14
Virtex-6 CXT Family Data Sheet
SelectIOTM DC Input and Output Levels
www..com
Values for VIL and VIH are recommended input voltages. Values for IOL and IOH are guaranteed over the recommended operating conditions at the VOL and VOH test points. Only selected standards are tested. These are chosen to ensure that all standards meet their specifications. The selected standards are tested at a minimum VCCO with the respective VOL and VOH voltage levels shown. Other standards are sample tested. Table 15: SelectIO DC Input and Output Levels
I/O Standard
LVCMOS25, LVDCI25 LVCMOS18, LVDCI18 LVCMOS15, LVDCI15 LVCMOS12 HSTL I_12 HSTL I(2)
VIL V, Min
-0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3 -0.3
VIH V, Max
0.7
VOL V, Max
VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3 VCCO + 0.3
VOH V, Min
VCCO - 0.4 VCCO - 0.45 75% VCCO 75% VCCO 75% VCCO VCCO - 0.4 VCCO - 0.4 VCCO - 0.4 - - VTT + 0.61 VTT + 0.81 - - VTT + 0.47 VTT + 0.60 - -
IOL mA
Note(3) Note(4) Note(4) Note(5) 6.3 8 16 24 - - 8.1 16.2 - - 6.7 13.4 - -
IOH mA
Note(3) Note(4) Note(4) Note(5) 6.3 -8 -16 -8 - - -8.1 -16.2 - - -6.7 -13.4 - -
V, Min
1.7 65% VCCO 65% VCCO 65% VCCO VREF + 0.1 VREF + 0.1 VREF + 0.1 VREF + 0.1 50% VCCO + 0.1 50% VCCO + 0.1 VREF + 0.15 VREF + 0.15
V, Max
0.4 0.45 25% VCCO 25% VCCO 25% VCCO 0.4 0.4 0.4 - - VTT - 0.61 VTT - 0.81 - - VTT - 0.47 VTT - 0.60 - -
35% VCCO 35% VCCO 35% VCCO VREF - 0.1 VREF - 0.1 VREF - 0.1 VREF - 0.1 50% VCCO - 0.1 50% VCCO - 0.1 VREF - 0.15 VREF - 0.15
HSTL II(2) HSTL III(2) DIFF HSTL I(2) DIFF HSTL SSTL2 I SSTL2 II DIFF SSTL2 I DIFF SSTL2 II SSTL18 I SSTL18 II DIFF SSTL18 I DIFF SSTL18 II SSTL15 DIFF SSTL15 II(2)
50% VCCO - 0.15 50% VCCO + 0.15 50% VCCO - 0.15 50% VCCO + 0.15 VREF - 0.125 VREF - 0.125 50% VCCO - 0.125 50% VCCO - 0.125 VREF + 0.125 VREF + 0.125 50% VCCO + 0.125 50% VCCO + 0.125
-
-
-
-
Notes: 1. Tested according to relevant specifications. 2. Applies to both 1.5V and 1.8V HSTL. 3. Using drive strengths of 2, 4, 6, 8, 12, 16, or 24 mA. 4. Using drive strengths of 2, 4, 6, 8, 12, or 16 mA. 5. Supported drive strengths of 2, 4, 6, or 8 mA. 6. For detailed interface specific DC voltage levels, see the Virtex-6 FPGA SelectIO Resources User Guide.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 15
Virtex-6 CXT Family Data Sheet
HT DC Specifications (HT_25)
Table 16: HT DC Specifications
Symbol
VCCO VOD VOD VOCM VOCM VID VID VICM VICM
www..com
DC Parameter
Supply Voltage Differential Output Voltage Change in VOD Magnitude Output Common Mode Voltage Change in VOCM Magnitude Input Differential Voltage Change in VID Magnitude Input Common Mode Voltage Change in VICM Magnitude
Conditions
RT = 100 across Q and Q signals RT = 100 across Q and Q signals
Min
2.38 495 -15 495 -15 200 -15 440 -15
Typ
2.5 600
Max
2.63 715 15
Units
V mV mV mV mV mV mV mV mV
600
715 15
600
1000 15
600
780 15
LVDS DC Specifications (LVDS_25)
Table 17: LVDS DC Specifications
Symbol
VCCO VOH VOL VODIFF VOCM VIDIFF VICM
DC Parameter
Supply Voltage Output High Voltage for Q and Q Output Low Voltage for Q and Q Differential Output Voltage (Q - Q), Q = High (Q - Q), Q = High Output Common-Mode Voltage Differential Input Voltage (Q - Q), Q = High (Q - Q), Q = High Input Common-Mode Voltage
Conditions
RT = 100 across Q and Q signals RT = 100 across Q and Q signals RT = 100 across Q and Q signals RT = 100 across Q and Q signals
Min
2.38
Typ
2.5
Max
2.63 1.675
Units
V V V
0.825 247 1.125 100 0.3 350 1.250 350 1.2 600 1.375 600 2.2
mV V mV V
Extended LVDS DC Specifications (LVDSEXT_25)
Table 18: Extended LVDS DC Specifications
Symbol
VCCO VOH VOL VODIFF VOCM VIDIFF VICM
DC Parameter
Supply Voltage Output High Voltage for Q and Q Output Low Voltage for Q and Q Differential Output Voltage (Q - Q), Q = High (Q - Q), Q = High Output Common-Mode Voltage Differential Input Voltage (Q - Q), Q = High (Q - Q), Q = High Input Common-Mode Voltage
Conditions
RT = 100 across Q and Q signals RT = 100 across Q and Q signals RT = 100 across Q and Q signals RT = 100 across Q and Q signals Common-mode input voltage = 1.25V Differential input voltage = 350 mV
Min
2.38
Typ
2.5 -
Max
2.63 1.785 - 820 1.375 1000 2.2
Units
V V V mV V mV V
0.715 350 1.125 100 0.3
- - 1.250 - 1.2
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 16
Virtex-6 CXT Family Data Sheet
LVPECL DC Specifications (LVPECL_25)
www..com
These values are valid when driving a 100 differential load only, i.e., a 100 resistor between the two receiver pins. The VOH levels are 200 mV below standard LVPECL levels and are compatible with devices tolerant of lower common-mode ranges. Table 19 summarizes the DC output specifications of LVPECL. For more information on using LVPECL, see the Virtex-6 FPGA SelectIO Resources User Guide. Table 19: LVPECL DC Specifications
Symbol
VOH VOL VICM VIDIFF
DC Parameter
Output High Voltage Output Low Voltage Input Common-Mode Voltage Differential Input Voltage(1,2)
Min
VCC - 1.025 VCC - 1.81 0.6 0.100
Typ
1.545 0.795
Max
VCC - 0.88 VCC - 1.62 2.2 1.5
Units
V V V V
Notes: 1. Recommended input maximum voltage not to exceed VCCAUX + 0.2V. 2. Recommended input minimum voltage not to go below -0.5V.
GTX Transceiver Specifications
GTX Transceiver DC Characteristics
Table 20: Absolute Maximum Ratings for GTX Transceivers
Symbol
MGTAVCC_N MGTAVCC_S MGTAVTT_N MGTAVTT_S MGTAVTTRCAL VIN VMGTREFCLK
Description
Analog supply voltage for the GTX transmitter and receiver circuits relative to GND Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND Analog supply voltage for the resistor calibration circuit of the GTX transceiver column Receiver (RXP/RXN) and Transmitter (TXP/TXN) absolute input voltage Reference clock absolute input voltage
Min
-0.5 -0.5 -0.5
Max
1.1 1.32 1.32
Units
V V V V V
Notes: 1. Stresses beyond those listed under Absolute Maximum Ratings might cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Operating Conditions is not implied. Exposure to Absolute Maximum Ratings conditions for extended periods of time might affect device reliability.
Table 21: Recommended Operating Conditions for GTX Transceivers(1)(2)
Symbol
MGTAVCC_N MGTAVCC_S MGTAVTT_N MGTAVTT_S MGTAVTTRCAL
Description
Analog supply voltage for the GTX transmitter and receiver circuits relative to GND Analog supply voltage for the GTX transmitter and receiver termination circuits relative to GND Analog supply voltage for the resistor calibration circuit of the GTX transceiver column
Min
0.95 1.14 1.14
Max
1.05 1.26 1.26
Units
V V V
Notes: 1. Each voltage listed requires the filter circuit described in Virtex-6 FPGA RocketIO GTX Transceiver User Guide. 2. Voltages are specified for the temperature range of TJ = -40C to +100C.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 17
Virtex-6 CXT Family Data Sheet
www..com Table 22: DC Characteristics Over Recommended Operating Conditions for GTX Transmitters(1)
Symbol
IMGTAVTT IMGTAVTTRCAL IMGTAVCC MGTRREF
Description
GTX transmitter termination supply current(2) GTX transceiver resistor termination calibration supply current GTX transceiver internal analog supply current Precision reference resistor for internal calibration termination
Min
Typ
Max
Units
mA mA mA
100.0 1% tolerance
Notes: 1. Typical values are specified at nominal voltage, 25C, with a 3.125 Gb/s line rate. 2. ICC numbers are given per GTX transceiver operating with default settings. 3. Values for currents other than the values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools.
Table 23: GTX Transceiver Quiescent Supply Current
Symbol
IAVTTQ IAVCCQ
Description
Quiescent MGTAVTT (transmitter termination) supply current Quiescent MGTAVCC (analog) supply current
Typ(1)
Max
Units
mA mA
Notes: 1. Typical values are specified at nominal voltage, 25C. 2. Device powered and unconfigured. 3. Currents for conditions other than values specified in this table can be obtained by using the XPOWER Estimator (XPE) or XPOWER Analyzer (XPA) tools. 4. GTX transceiver quiescent supply current for an entire device can be calculated by multiplying the values in this table by the number of available GTX transceivers.
GTX Transceiver DC Input and Output Levels
Table 24 summarizes the DC output specifications of the GTX transceivers in Virtex-6 FPGAs. Figure 11 shows the singleended output voltage swing. Figure 12 shows the peak-to-peak differential output voltage. Consult the Virtex-6 FPGA RocketIO GTX Transceiver User Guide for further details. Table 24: GTX Transceiver DC Specifications
Symbol
DVPPIN VIN VCMIN DVPPOUT VSEOUT VCMOUTDC RIN ROUT TOSKEW CEXT
DC Parameter
Differential peak-to-peak input voltage Input voltage Common mode input voltage Differential peak-to-peak output voltage (1) Single-ended output voltage swing (1) DC common mode output voltage. Differential input resistance Differential output resistance Transmitter output skew Recommended external AC coupling
Conditions
External AC coupled DC coupled MGTAVTT_N/S = 1.2V DC coupled MGTAVTT_N/S = 1.2V
Min
125 -400
Typ
Max
2000 MGTAVTT
Units
mV mV mV
2/3 MGTAVTT_N/S 1000 500
mV mV mV ps
Equation based
MGTAVTT_N/S - DVPPOUT/2 100 100
capacitor(2)
100
nF
Notes: 1. The output swing and preemphasis levels are programmable using the attributes discussed in Virtex-6 FPGA RocketIO GTX Transceiver User Guide and can result in values lower than reported in this table. 2. Other values can be used as appropriate to conform to specific protocols and standards.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 18
Virtex-6 CXT Family Data Sheet
X-Ref Target - Figure 11
www..com
+V
P VSEOUT
ds152_01_042109
N 0
Figure 11: Single-Ended Output Voltage Swing
X-Ref Target - Figure 12
+V
0
DVPPOUT DVPPIN
-V
P-N
ds152_02_042109
Figure 12: Peak-to-Peak Differential Output Voltage Table 25 summarizes the DC specifications of the clock input of the GTX transceiver. Figure 13 shows the single-ended input voltage swing. Figure 14 shows the peak-to-peak differential clock input voltage swing. Consult theVirtex-6 FPGA RocketIO GTX Transceiver User Guide for further details. Table 25: GTX Transceiver Clock DC Input Level Specification(1)
Symbol
VIDIFF VISE RIN CEXT
DC Parameter
Differential peak-to-peak input voltage Single-ended input voltage Differential input resistance Required external AC coupling capacitor
Conditions
Min
Typ
800 400 100 100
Max
Units
mV mV nF
Notes: 1. VMIN = 0V and VMAX = MGTAVCC
X-Ref Target - Figure 13
+V
P
VISE
N
0
Figure 13: Single-Ended Clock Input Voltage Swing Peak-to-Peak
ds152_03_042109
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 19
Virtex-6 CXT Family Data Sheet
X-Ref Target - Figure 14
www..com
+V
P-N
0
VIDIFF
-V
ds152_04_042109
Figure 14: Differential Clock Input Voltage Swing Peak-to-Peak
GTX Transceiver Switching Characteristics
Consult Virtex-6 FPGA RocketIO GTX Transceiver User Guide for further information. Table 26: GTX Transceiver Performance
Symbol
FGTXMAX FGPLLMAX FGPLLMIN
Description
Maximum GTX transceiver data rate Maximum PLL frequency Minimum PLL frequency
Speed Grade -2
3.75 2.7 1.35
Units
Gb/s GHz GHz
-1
3.125 2.7 1.35
Table 27: Dynamic Reconfiguration Port (DRP) in the GTX Transceiver Switching Characteristics
Symbol
FGTXDRPCLK
Description
GTXDRPCLK maximum frequency
Speed Grade -2
100
Units -1
MHz
100
Table 28: GTX Transceiver Reference Clock Switching Characteristics
Symbol
FGCLK TRCLK TFCLK TDCREF
Description
Reference clock frequency range Reference clock rise time Reference clock fall time Reference clock duty cycle
Conditions
All Speed Grades Min
67.5
Typ
Max
375
Units
MHz ps ps %
20% - 80% 80% - 20% Transceiver PLL only. See Table 29 for USRCLK2 and USRCLK duty cycle requirements Initial PLL lock Lock to data after PLL has locked to the reference clock
200 200 50
TLOCK TPHASE
Clock recovery frequency acquisition time Clock recovery phase acquisition time
1
ms s
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 20
Virtex-6 CXT Family Data Sheet
X-Ref Target - Figure 15
www..com
TRCLK
80%
20%
TFCLK
ds152_05_042109
Figure 15: Reference Clock Timing Parameters Table 29: GTX Transceiver User Clock Switching Characteristics(1)
Symbol
FTXOUT FRXREC TRX TRX2
Description
TXOUTCLK maximum frequency RXRECCLK maximum frequency RXUSRCLK maximum frequency RXUSRCLK2 maximum frequency
Conditions
Internal 20-bit data path Internal 16-bit data path
Speed Grade -2 -1
Units
MHz MHz MHz MHz
1 byte interface 2 byte interface 4 byte interface
MHz MHz MHz MHz MHz MHz MHz
TTX TTX2
TXUSRCLK maximum frequency TXUSRCLK2 maximum frequency 1 byte interface 2 byte interface 4 byte interface
Notes:
1.
Clocking must be implemented as described in Virtex-6 FPGA RocketIO GTX Transceiver User Guide.
Table 30: GTX Transceiver Transmitter Switching Characteristics
Symbol
FGTXTX TRTX TFTX TLLSKEW VTXOOBVDPP TTXOOBTRANSITION TJ3.75 DJ3.75 TJ3.125 DJ3.125 TJ3.125L DJ3.125L TJ2.5 DJ2.5 TJ1.25 DJ1.25 TJ675 DJ675 TX Rise time TX Fall time TX lane-to-lane skew(1) 20 3.75 Gb/s Jitter(2) 3.125 Gb/s 3.125 Jitter(2) 2.5 Gb/s 1.25 Gb/s Jitter(2) 675 Mb/s Gb/s(3)
Description
Serial data rate range
Condition
Min
0.15
Typ
Max
FGTXMAX
Units
Gb/s ps ps ps mV ns UI UI UI UI UI UI UI UI UI UI UI UI
20%-80% 80%-20%
Electrical idle amplitude Electrical idle transition time Total Total Total Total Total Total Jitter(2) Jitter(2) Jitter(2) Jitter(2) Jitter(2) Jitter(2) Deterministic
Deterministic Jitter(2) Deterministic
Deterministic Jitter(2) Deterministic
Deterministic Jitter(2)
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 21
Virtex-6 CXT Family Data Sheet Table 30: GTX Transceiver Transmitter Switching Characteristics (Cont'd)
Symbol
TJ150 DJ150 Total Jitter(2) Jitter(2) Deterministic
www..com
Description
Condition 150 Mb/s
Min
Typ
Max
Units
UI UI
Notes: 1. Using same REFCLK input with TXENPMAPHASEALIGN enabled for up to four consecutive GTX transceiver sites. 2. Using PLL_DIVSEL_FB = 2, INTDATAWIDTH = 1. These values are NOT intended for protocol specific compliance determinations. 3. PLL frequency at 1.5625 GHz and OUTDIV = 1.
Table 31: GTX Transceiver Receiver Switching Characteristics
Symbol
FGTXRX TRXELECIDLE RXOOBVDPP RXSST RXRL RXPPMTOL Serial data rate TIme for RXELECIDLE to respond to loss or restoration of data OOB detect threshold peak-to-peak Receiver spread-spectrum tracking(1) Run length (CID) Data/REFCLK PPM offset tolerance Modulated @ 33 KHz Internal AC capacitor bypassed CDR 2nd-order loop disabled CDR 2nd-order loop enabled 60 150
Description
RX oversampler not enabled RX oversampler enabled
Min
0.675 0.15
Typ
Max
FGTXMAX 0.675
Units
Gb/s Gb/s ns
mV ppm UI ppm ppm UI UI UI UI UI UI UI UI UI
SJ Jitter
Tolerance(2)
Sinusoidal Jitter(3) Sinusoidal Jitter(3) Sinusoidal Sinusoidal Jitter(3) Jitter(3) 3.75 Gb/s 3.125 Gb/s 3.125 Gb/s(4) 2.5 Gb/s 1.25 Gb/s 675 Mb/s 150 Mb/s 3.125 Gb/s 3.125 Gb/s
JT_SJ3.75 JT_SJ3.125 JT_SJ3.125L JT_SJ2.5 JT_SJ1.25 JT_SJ675 JT_SJ150
Sinusoidal Jitter(3) Sinusoidal Jitter(3) Sinusoidal Jitter(3)
SJ Jitter Tolerance with Stressed
JT_TJSE3.125 JT_SJSE3.125
Eye(2)
Total Jitter with Stressed Eye Sinusoidal Jitter with Stressed Eye
Notes: 1. Using PLL_RXDIVSEL_OUT = 1, 2, and 4. 2. All jitter values are based on a Bit Error Ratio of 1e-12. 3. Using 80 MHz sinusoidal jitter only in the absence of deterministic and random jitter. 4. PLL frequency at 1.5625 GHz and OUTDIV = 1.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 22
Virtex-6 CXT Family Data Sheet
Ethernet MAC Switching Characteristics
Consult Virtex-6 FPGA Embedded Tri-mode Ethernet MAC User Guide for further information. Table 32: Maximum Ethernet MAC Performance
Symbol
FTEMACCLIENT
www..com
Description
Client interface maximum frequency
Conditions
10 Mb/s - 8-bit width 100 Mb/s - 8-bit width 1000 Mb/s - 8-bit width 1000 Mb/s - 16-bit width
Speed Grade -2
2.5(1) 25(2) 125 62.5 2.5 25 125
Units
MHz MHz MHz MHz MHz MHz MHz
-1
2.5(1) 25(2) 125 62.5 2.5 25 125
FTEMACPHY
Physical interface maximum frequency
10 Mb/s - 4-bit width 100 Mb/s - 4-bit width 1000 Mb/s - 8-bit width
Notes:
1. 2. When not using clock enable, the FMAX is lowered to 1.25 MHz. When not using clock enable, the FMAX is lowered to 12.5 MHz.
Integrated Interface Block for PCI Express Designs Switching Characteristics
Table 33: Maximum Performance for PCI Express Designs
Symbol
FPCIECORE FPCIEUSER Core clock maximum frequency User clock maximum frequency
Description
Speed Grade -2
250 250
Units
MHz MHz
-1
250 250
Performance Characteristics
This section provides the performance characteristics of some common functions and designs implemented in Virtex-6 devices. The numbers reported here are worst-case values; they have all been fully characterized. These values are subject to the same guidelines as the "Switching Characteristics," page 24. Table 34: Interface Performances
Description
Networking Applications SFI-4.1 (SDR LVDS Interface) SPI-4.2 (DDR LVDS Interface) Memory Interfaces DDR2 DDR3 QDR II + SRAM RLDRAM II
Speed Grade -2 -1
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 23
Virtex-6 CXT Family Data Sheet
Switching Characteristics
All values represented in this data sheet are based on the advanced speed specification (version 1.0). Switching characteristics are specified on a per-speed-grade basis and can be designated as Advance, Preliminary, or Production. Each designation is defined as follows: Advance These specifications are based on simulations only and are typically available soon after device design specifications are frozen. Although speed grades with this designation are considered relatively stable and conservative, some underreporting might still occur. Preliminary These specifications are based on complete ES (engineering sample) silicon characterization. Devices and speed grades with this designation are intended to give a better indication of the expected performance of production silicon. The probability of under-reporting delays is greatly reduced as compared to Advance data. Production These specifications are released once enough production silicon of a particular device family member has been characterized to provide full correlation between
www..com
specifications and devices over numerous production lots. There is no under-reporting of delays, and customers receive formal notification of any subsequent changes. Typically, the slowest speed grades transition to Production before faster speed grades. All specifications are always representative of worst-case supply voltage and junction temperature conditions. Since individual family members are produced at different times, the migration from one category to another depends completely on the status of the fabrication process for each device. Table 35 correlates the current status of each Virtex-6 device on a per speed grade basis. Table 35: Virtex-6 Device Speed Grade Designations
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Speed Grade Designations Advance
-2, -1 -2, -1 -2, -1 -2, -1
Preliminary
Production
Testing of Switching Characteristics
All devices are 100% functionally tested. Internal timing parameters are derived from measuring internal test patterns. Listed below are representative values. For more specific, more precise, and worst-case guaranteed data, use the values reported by the static timing analyzer and back-annotate to the simulation net list. Unless otherwise noted, values apply to all Virtex-6 devices.
Production Silicon and ISE Software Status
In some cases, a particular family member (and speed grade) is released to production before a speed specification is released with the correct label (Advance, Preliminary, Production). Any labeling discrepancies are corrected in subsequent speed specification releases. Table 36 lists the production released Virtex-6 family member, speed grade, and the minimum corresponding supported speed specification version and ISE software revisions. The ISETM software and speed specifications listed are the minimum releases required for production. All subsequent releases of software and speed specifications are valid. Table 36: Virtex-6 Device Production Software and Speed Specification Release
Device
XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Notes: 1. Blank entries indicate a device and/or speed grade in advance or preliminary status.
Speed Grade Designations -2 -1
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 24
Virtex-6 CXT Family Data Sheet
IOB Pad Input/Output/3-State Switching Characteristics
Table 37 summarizes the values of standard-specific data input delay adjustments, output delays terminating at pads (based on standard) and 3-state delays. TIOPI is described as the delay from IOB pad through the input buffer to the I-pin of an IOB pad. The delay varies depending on the capability of the SelectIO input buffer. TIOOP is described as the delay from the O pin to the IOB pad through the output buffer of an IOB pad. The delay varies depending on the capability of the SelectIO output buffer. Table 37: IOB Switching Characteristics
TIOPI I/O Standard Speed Grade -2
LVDS_25 LVDSEXT_25 HT_25 BLVDS_25 RSDS_25 (point to point) HSTL_I HSTL_II HSTL_III HSTL_I_18 HSTL_II_18 HSTL_III_18 SSTL2_I SSTL2_II SSTL15 LVCMOS25, Slow, 2 mA LVCMOS25, Slow, 4 mA LVCMOS25, Slow, 6 mA LVCMOS25, Slow, 8 mA LVCMOS25, Slow, 12 mA LVCMOS25, Slow, 16 mA LVCMOS25, Slow, 24 mA LVCMOS25, Fast, 2 mA LVCMOS25, Fast, 4 mA LVCMOS25, Fast, 6 mA LVCMOS25, Fast, 8 mA LVCMOS25, Fast, 12 mA LVCMOS25, Fast, 16 mA LVCMOS25, Fast, 24 mA 1.15 1.15 1.15 1.15 1.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
www..com
TIOTP is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is disabled. The delay varies depending on the SelectIO capability of the output buffer. Table 38 summarizes the value of TIOTPHZ. TIOTPHZ is described as the delay from the T pin to the IOB pad through the output buffer of an IOB pad, when 3-state is enabled (i.e., a high impedance state).
TIOOP Speed Grade -2
1.68 1.84 1.78 1.67 1.68 1.73 1.74 1.71 1.75 1.81 1.71 1.77 1.72 1.71 6.01 3.79 3.08 2.72 2.17 2.29 2.02 6.04 3.82 2.99 2.65 2.08 2.13 1.99
TIOTP Speed Grade -2
1.68 1.84 1.78 1.67 1.68 1.73 1.74 1.71 1.75 1.81 1.71 1.77 1.72 1.71 6.01 3.79 3.08 2.72 2.17 2.29 2.02 6.04 3.82 2.99 2.65 2.08 2.13 1.99
Units
-1
1.15 1.15 1.15 1.15 1.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70
-1
1.68 1.84 1.78 1.67 1.68 1.73 1.74 1.71 1.75 1.81 1.71 1.77 1.72 1.71 6.01 3.79 3.08 2.72 2.17 2.29 2.02 6.04 3.82 2.99 2.65 2.08 2.13 1.99
-1
1.68 1.84 1.78 1.67 1.68 1.73 1.74 1.71 1.75 1.81 1.71 1.77 1.72 1.71 6.01 3.79 3.08 2.72 2.17 2.29 2.02 6.04 3.82 2.99 2.65 2.08 2.13 1.99 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 25
Virtex-6 CXT Family Data Sheet Table 37: IOB Switching Characteristics (Cont'd)
TIOPI I/O Standard Speed Grade -2
LVCMOS18, Slow, 2 mA LVCMOS18, Slow, 4 mA LVCMOS18, Slow, 6 mA LVCMOS18, Slow, 8 mA LVCMOS18, Slow, 12 mA LVCMOS18, Slow, 16 mA LVCMOS18, Fast, 2 mA LVCMOS18, Fast, 4 mA LVCMOS18, Fast, 6 mA LVCMOS18, Fast, 8 mA LVCMOS18, Fast, 12 mA LVCMOS18, Fast, 16 mA LVCMOS15, Slow, 2 mA LVCMOS15, Slow, 4 mA LVCMOS15, Slow, 6 mA LVCMOS15, Slow, 8 mA LVCMOS15, Slow, 12 mA LVCMOS15, Slow, 16 mA LVCMOS15, Fast, 2 mA LVCMOS15, Fast, 4 mA LVCMOS15, Fast, 6 mA LVCMOS15, Fast, 8 mA LVCMOS15, Fast, 12 mA LVCMOS15, Fast, 16 mA LVCMOS12, Slow, 2 mA LVCMOS12, Slow, 4 mA LVCMOS12, Slow, 6 mA LVCMOS12, Slow, 8 mA LVCMOS12, Fast, 2 mA LVCMOS12, Fast, 4 mA LVCMOS12, Fast, 6 mA LVCMOS12, Fast, 8 mA LVDCI_25 LVDCI_18 LVDCI_15 LVDCI_DV2_25 LVDCI_DV2_18 LVDCI_DV2_15 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.70 0.76 0.90 0.70 0.76 0.90
www..com
TIOOP Speed Grade -2
5.12 3.39 2.75 2.51 2.17 2.14 4.84 3.11 2.61 2.28 1.97 1.98 4.29 3.10 2.68 2.23 2.13 2.04 4.28 2.78 2.42 2.11 1.97 1.96 3.75 2.93 2.41 2.25 3.39 2.51 2.11 2.02 2.26 2.47 2.24 2.01 2.00 1.91
TIOTP Speed Grade -2
5.12 3.39 2.75 2.51 2.17 2.14 4.84 3.11 2.61 2.28 1.97 1.98 4.29 3.10 2.68 2.23 2.13 2.04 4.28 2.78 2.42 2.11 1.97 1.96 3.75 2.93 2.41 2.25 3.39 2.51 2.11 2.02 2.26 2.47 2.24 2.01 2.00 1.91
Units
-1
0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.76 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.70 0.76 0.90 0.70 0.76 0.90
-1
5.12 3.39 2.75 2.51 2.17 2.14 4.84 3.11 2.61 2.28 1.97 1.98 4.29 3.10 2.68 2.23 2.13 2.04 4.28 2.78 2.42 2.11 1.97 1.96 3.75 2.93 2.41 2.25 3.39 2.51 2.11 2.02 2.26 2.47 2.24 2.01 2.00 1.91
-1
5.12 3.39 2.75 2.51 2.17 2.14 4.84 3.11 2.61 2.28 1.97 1.98 4.29 3.10 2.68 2.23 2.13 2.04 4.28 2.78 2.42 2.11 1.97 1.96 3.75 2.93 2.41 2.25 3.39 2.51 2.11 2.02 2.26 2.47 2.24 2.01 2.00 1.91 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 26
Virtex-6 CXT Family Data Sheet Table 37: IOB Switching Characteristics (Cont'd)
TIOPI I/O Standard Speed Grade -2
LVPECL_25 HSTL_I_12 HSTL_I_DCI HSTL_II_DCI HSTL_II_T_DCI HSTL_III_DCI HSTL_I_DCI_18 HSTL_II_DCI_18 HSTL_II _T_DCI_18 HSTL_III_DCI_18 DIFF_HSTL_I_18 DIFF_HSTL_I_DCI_18 DIFF_HSTL_I DIFF_HSTL_I_DCI DIFF_HSTL_II_18 DIFF_HSTL_II_DCI_18 DIFF_HSTL_II _T_DCI_18 DIFF_HSTL_II DIFF_HSTL_II_DCI SSTL2_I_DCI SSTL2_II_DCI SSTL2_II_T_DCI SSTL18_I SSTL18_II SSTL18_I_DCI SSTL18_II_DCI SSTL18_II_T_DCI SSTL15_T_DCI SSTL15_DCI DIFF_SSTL2_I DIFF_SSTL2_I_DCI DIFF_SSTL2_II DIFF_SSTL2_II_DCI DIFF_SSTL2_II_T_DCI DIFF_SSTL18_I DIFF_SSTL18_I_DCI DIFF_SSTL18_II DIFF_SSTL18_II_DCI 1.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
www..com
TIOOP Speed Grade -2
1.65 1.78 1.66 1.68 1.66 1.62 1.68 1.62 1.68 1.69 1.75 1.68 1.73 1.66 1.81 1.62 1.68 1.74 1.68 1.70 1.67 1.70 1.75 1.67 1.67 1.63 1.67 1.68 1.68 1.77 1.70 1.72 1.67 1.70 1.75 1.67 1.67 1.63
TIOTP Speed Grade -2
1.65 1.78 1.66 1.68 1.66 1.62 1.68 1.62 1.68 1.69 1.75 1.68 1.73 1.66 1.81 1.62 1.68 1.74 1.68 1.70 1.67 1.70 1.75 1.67 1.67 1.63 1.67 1.68 1.68 1.77 1.70 1.72 1.67 1.70 1.75 1.67 1.67 1.63
Units
-1
1.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15
-1
1.65 1.78 1.66 1.68 1.66 1.62 1.68 1.62 1.68 1.69 1.75 1.68 1.73 1.66 1.81 1.62 1.68 1.74 1.68 1.70 1.67 1.70 1.75 1.67 1.67 1.63 1.67 1.68 1.68 1.77 1.70 1.72 1.67 1.70 1.75 1.67 1.67 1.63
-1
1.65 1.78 1.66 1.68 1.66 1.62 1.68 1.62 1.68 1.69 1.75 1.68 1.73 1.66 1.81 1.62 1.68 1.74 1.68 1.70 1.67 1.70 1.75 1.67 1.67 1.63 1.67 1.68 1.68 1.77 1.70 1.72 1.67 1.70 1.75 1.67 1.67 1.63 ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 27
Virtex-6 CXT Family Data Sheet Table 37: IOB Switching Characteristics (Cont'd)
TIOPI I/O Standard Speed Grade -2
DIFF_SSTL18_II_T_DCI DIFF_SSTL15 DIFF_SSTL15_DCI DIFF_SSTL15_T_DCI 1.15 1.12 1.12 1.12
www..com
TIOOP Speed Grade -2
1.67 1.71 1.68 1.68
TIOTP Speed Grade -2
1.67 1.71 1.68 1.68
Units
-1
1.15 1.12 1.12 1.12
-1
1.67 1.71 1.68 1.68
-1
1.67 1.71 1.68 1.68 ns ns ns ns
Table 38: IOB 3-state ON Output Switching Characteristics (TIOTPHZ)
Symbol
TIOTPHZ
Description -2
T input to Pad high-impedance 2
Speed Grade -1
2
Units
ns
I/O Standard Adjustment Measurement Methodology
Input Delay Measurements
Table 39 shows the test setup parameters used for measuring input delay. Table 39: Input Delay Measurement Methodology
Description
LVCMOS, 2.5V LVCMOS, 1.8V LVCMOS, 1.5V HSTL (High-Speed Transceiver Logic), Class I & II HSTL, Class III HSTL, Class I & II, 1.8V HSTL, Class III 1.8V SSTL (Stub Terminated Transceiver Logic), Class I & II, 3.3V SSTL, Class I & II, 2.5V SSTL, Class I & II, 1.8V LVDS (Low-Voltage Differential Signaling), 2.5V LVDSEXT (LVDS Extended Mode), 2.5V HT (HyperTransport), 2.5V I/O Standard Attribute LVCMOS25 LVCMOS18 LVCMOS15 HSTL_I, HSTL_II HSTL_III HSTL_I_18, HSTL_II_18 HSTL_III_18 SSTL3_I, SSTL3_II SSTL2_I, SSTL2_II SSTL18_I, SSTL18_II LVDS_25 LVDSEXT_25 LDT_25
VL (1,2)
0 0 0 VREF - 0.5 VREF - 0.5 VREF - 0.5 VREF - 0.5 VREF - 1.00 VREF - 0.75 VREF - 0.5 1.2 - 0.125 1.2 - 0.125 0.6 - 0.125
VH (1,2)
2.5 1.8 1.5 VREF + 0.5 VREF + 0.5 VREF + 0.5 VREF + 0.5 VREF + 1.00 VREF + 0.75 VREF + 0.5 1.2 + 0.125 1.2 + 0.125 0.6 + 0.125
VMEAS
(1,4,5)
VREF
(1,3,5)
1.25 0.9 0.75 VREF VREF VREF VREF VREF VREF VREF 0(6) 0(6) 0(6)
- - - 0.75 0.90 0.90 1.08 1.5 1.25 0.90
Notes: 1. The input delay measurement methodology parameters for LVDCI are the same for LVCMOS standards of the same voltage. Input delay measurement methodology parameters for HSLVDCI are the same as for HSTL_II standards of the same voltage. Parameters for all other DCI standards are the same for the corresponding non-DCI standards. 2. Input waveform switches between VLand VH. 3. Measurements are made at typical, minimum, and maximum VREF values. Reported delays reflect worst case of these measurements. VREF values listed are typical. 4. Input voltage level from which measurement starts. 5. This is an input voltage reference that bears no relation to the VREF / VMEAS parameters found in IBIS models and/or noted in Figure 16. 6. The value given is the differential input voltage.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 28
Virtex-6 CXT Family Data Sheet
Output Delay Measurements
Output delays are measured using a Tektronix P6245 TDS500/600 probe (< 1 pF) across approximately 4" of FR4 microstrip trace. Standard termination was used for all testing. The propagation delay of the 4" trace is characterized separately and subtracted from the final measurement, and is therefore not included in the generalized test setups shown in Figure 16 and Figure 17.
X-Ref Target - Figure 16
X-Ref Target - Figure 17
www..com
FPGA Output
+ CREF RREF VMEAS -
ds152_07_042109
VREF
Figure 17: Differential Test Setup Measurements and test conditions are reflected in the IBIS models except where the IBIS format precludes it. Parameters VREF, RREF, CREF, and VMEAS fully describe the test conditions for each I/O standard. The most accurate prediction of propagation delay in any given application can be obtained through IBIS simulation, using the following method: 1. Simulate the output driver of choice into the generalized test setup, using values from Table 40. 2. Record the time to VMEAS .
ds152_06_042109
FPGA Output
RREF
VMEAS (voltage level when taking delay measurement) CREF
(probe capacitance)
Figure 16: Single Ended Test Setup
3. Simulate the output driver of choice into the actual PCB trace and load, using the appropriate IBIS model or capacitance value to represent the load. 4. Record the time to VMEAS . 5. Compare the results of steps 2 and 4. The increase or decrease in delay yields the actual propagation delay of the PCB trace.
Table 40: Output Delay Measurement Methodology
Description
LVCMOS, 2.5V LVCMOS, 1.8V LVCMOS, 1.5V LVCMOS, 1.2V HSTL (High-Speed Transceiver Logic), Class I HSTL, Class II HSTL, Class III HSTL, Class I, 1.8V HSTL, Class II, 1.8V HSTL, Class III, 1.8V SSTL (Stub Series Terminated Logic), Class I, 1.8V SSTL, Class II, 1.8V SSTL, Class I, 2.5V SSTL, Class II, 2.5V LVDS (Low-Voltage Differential Signaling), 2.5V LVDSEXT (LVDS Extended Mode), 2.5V BLVDS (Bus LVDS), 2.5V
I/O Standard Attribute
LVCMOS25 LVCMOS18 LVCMOS15 LVCMOS12 HSTL_I HSTL_II HSTL_III HSTL_I_18 HSTL_II_18 HSTL_III_18 SSTL18_I SSTL18_II SSTL2_I SSTL2_II LVDS_25 LVDS_25 BLVDS_25
RREF ()
1M 1M 1M 1M 50 25 50 50 25 50 50 25 50 25 100 100 100
CREF(1) (pF)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
VMEAS (V)
1.25 0.9 0.75 0.75 VREF VREF 0.9 VREF VREF 1.1 VREF VREF VREF VREF 0(4) 0(4) 0(4)
VREF (V)
0 0 0 0 0.75 0.75 1.5 0.9 0.9 1.8 0.9 0.9 1.25 1.25 1.2 1.2 0
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 29
Virtex-6 CXT Family Data Sheet Table 40: Output Delay Measurement Methodology (Cont'd)
Description
HT (HyperTransport), 2.5V LVPECL (Low-Voltage Positive Emitter-Coupled Logic), 2.5V LVDCI/HSLVDCI, 2.5V LVDCI/HSLVDCI, 1.8V LVDCI/HSLVDCI, 1.5V LDT_25 LVPECL_25 LVDCI_25, HSLVDCI_25 LVDCI_18, HSLVDCI_18 LVDCI_15, HSLVDCI_15
www..com
I/O Standard Attribute
RREF ()
100 100 1M 1M 1M 50 50 50 50 50 50
CREF(1) (pF)
0 0 0 0 0 0 0 0 0 0 0
VMEAS (V)
0(4) 0(4) 1.25 0.9 0.75 VREF 0.9 VREF 1.1 VREF VREF
VREF (V)
0.6 0 0 0 0 0.75 1.5 0.9 1.8 0.9 1.25
HSTL (High-Speed Transceiver Logic), Class I & II, with DCI HSTL_I_DCI, HSTL_II_DCI HSTL, Class III, with DCI HSTL, Class I & II, 1.8V, with DCI HSTL, Class III, 1.8V, with DCI HSTL_III_DCI HSTL_I_DCI_18, HSTL_II_DCI_18 HSTL_III_DCI_18
SSTL (Stub Series Termi.Logic), Class I & II, 1.8V, with DCI SSTL18_I_DCI, SSTL18_II_DCI SSTL, Class I & II, 2.5V, with DCI
Notes: 1. CREF is the capacitance of the probe, nominally 0 pF. 2. Per PCI specifications. 3. Per PCI-X specifications. 4. The value given is the differential input voltage.
SSTL2_I_DCI, SSTL2_II_DCI
Input/Output Logic Switching Characteristics
Table 41: ILOGIC Switching Characteristics
Symbol
Setup/Hold TICE1CK/TICKCE1 TISRCK/TICKSR TIDOCK/TIOCKD TIDOCKD/TIOCKDD Combinatorial TIDI TIDID Sequential Delays TIDLO TIDLOD TICKQ TRQ_ILOGIC TGSRQ_ILOGIC Set/Reset TRPW_ILOGIC Minimum Pulse Width, SR inputs 1.30 1.30 ns, Min D pin to Q1 pin using flip-flop as a latch without Delay DDLY pin to Q1 pin using flip-flop as a latch (using IODELAY) CLK to Q outputs SR pin to OQ/TQ out Global Set/Reset to Q outputs 0.64 0.68 0.71 1.15 10.51 0.64 0.68 0.71 1.15 10.51 ns ns ns ns ns D pin to O pin propagation delay, no Delay DDLY pin to O pin propagation delay (using IODELAY) 0.20 0.25 0.20 0.25 ns ns CE1 pin Setup/Hold with respect to CLK SR pin Setup/Hold with respect to CLK D pin Setup/Hold with respect to CLK without Delay DDLY pin Setup/Hold with respect to CLK (using IODELAY) 0.27/0.05 0.96/-0.09 0.10/0.54 0.14/0.41 0.27/0.05 0.96/-0.09 0.10/0.54 0.14/0.39 ns ns ns ns
Description
Speed Grade -2 -1
Units
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 30
Virtex-6 CXT Family Data Sheet
Table 42: OLOGIC Switching Characteristics
Symbol
Setup/Hold TODCK/TOCKD TOOCECK/TOCKOCE TOSRCK/TOCKSR TOTCK/TOCKT TOTCECK/TOCKTCE Combinatorial TDOQ Sequential Delays TOCKQ TRQ TGSRQ Set/Reset TRPW Minimum Pulse Width, SR inputs 1.30 CLK to OQ/TQ out SR pin to OQ/TQ out Global Set/Reset to Q outputs 0.71 1.05 10.51 D1 to OQ out or T1 to TQ out 1.01 D1/D2 pins Setup/Hold with respect to CLK OCE pin Setup/Hold with respect to CLK SR pin Setup/Hold with respect to CLK T1/T2 pins Setup/Hold with respect to CLK TCE pin Setup/Hold with respect to CLK 0.51/-0.11 0.09/-0.05 0.70/-0.29 0.51/-0.10 0.10/-0.05
www..com
Description
Speed Grade -2 -1
Units
0.51/-0.11 0.09/-0.05 0.70/-0.29 0.51/-0.10 0.10/-0.05
ns ns ns ns ns
1.01
ns
0.71 1.05 10.51
ns ns ns
1.30
ns, Min
Input Serializer/Deserializer Switching Characteristics
Table 43: ISERDES Switching Characteristics
Symbol
Setup/Hold for Control Lines TISCCK_BITSLIP/ TISCKC_BITSLIP TISCCK_CE / TISCKC_CE TISCCK_CE2 /
(2)
Description
Speed Grade -2 -1
Units
BITSLIP pin Setup/Hold with respect to CLKDIV CE pin Setup/Hold with respect to CLK (for CE1) CE pin Setup/Hold with respect to CLKDIV (for CE2)
0.09/0.17 0.21/0.58 -0.06/0.31
0.09/0.17 0.21/0.58 -0.06/0.31
ns ns ns
TISCKC_CE2(2)
Setup/Hold for Data Lines TISDCK_D /TISCKD_D TISDCK_DDLY /TISCKD_DDLY TISDCK_D_DDR /TISCKD_D_DDR TISDCK_DDLY_DDR TISCKD_DDLY_DDR Sequential Delays TISCKO_Q Propagation Delays TISDO_DO D input to DO output pin 0.25 0.25 ns CLKDIV to out at Q pin 0.56 0.56 ns D pin Setup/Hold with respect to CLK DDLY pin Setup/Hold with respect to CLK (using IODELAY) D pin Setup/Hold with respect to CLK at DDR mode D pin Setup/Hold with respect to CLK at DDR mode (using IODELAY) 0.04/0.14 0.08/0.09 0.04/0.14 0.08/0.09 0.04/0.14 0.08/0.09 0.04/0.14 0.08/0.09 ns ns ns ns
Notes: 1. Recorded at 0 tap value. 2. TISCCK_CE2 and TISCKC_CE2 are reported as TISCCK_CE/TISCKC_CE in TRACE report.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 31
Virtex-6 CXT Family Data Sheet
Output Serializer/Deserializer Switching Characteristics
Table 44: OSERDES Switching Characteristics
Symbol
Setup/Hold TOSDCK_D/TOSCKD_D TOSDCK_T/TOSCKD_T(1) TOSDCK_T2/TOSCKD_T2(1) TOSCCK_OCE/TOSCKC_OCE TOSCCK_S TOSCCK_TCE/TOSCKC_TCE Sequential Delays TOSCKO_OQ TOSCKO_TQ Combinatorial TOSDO_TTQ T input to TQ Out 0.97 Clock to out from CLK to OQ Clock to out from CLK to TQ 0.82 0.82 D input Setup/Hold with respect to CLKDIV T input Setup/Hold with respect to CLK T input Setup/Hold with respect to CLKDIV OCE input Setup/Hold with respect to CLK SR (Reset) input Setup with respect to CLKDIV TCE input Setup/Hold with respect to CLK 0.30/-0.12 0.51/-0.08 0.31/-0.08 0.09/-0.05 0.07 0.10/-0.05
www..com
Description
Speed Grade -2 -1
Units
0.30/-0.12 0.51/-0.08 0.31/-0.08 0.09/-0.05 0.07 0.10/-0.05
ns ns ns ns ns ns
0.82 0.82
ns ns
0.97
ns
Notes: 1. TOSDCK_T2 and TOSCKD_T2 are reported as TOSDCK_T/TOSCKD_T in TRACE report.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 32
Virtex-6 CXT Family Data Sheet
Input/Output Delay Switching Characteristics
Table 45: Input/Output Delay Switching Characteristics
Symbol
IDELAYCTRL TDLYCCO_RDY FIDELAYCTRL_REF
IDELAYCTRL_REF_PRECISION
www..com
Description -2
Speed Grade -1
Units
Reset to Ready for IDELAYCTRL REFCLK frequency REFCLK precision Minimum Reset pulse width
3 200 10 50
3 200 10 50
s MHz MHz ns
TIDELAYCTRL_RPW IODELAY TIDELAYRESOLUTION
IODELAY Chain Delay Resolution Pattern dependent period jitter in delay chain for clock pattern. (1)
1/(32 x 2 x FREF) 0 5 9 320 0.65/-0.09 0.31/-0.00 0.69/-0.08 Note 4 Note 4 Note 4 0 5 9 320 0.65/-0.09 0.31/-0.00 0.69/-0.08 Note 4 Note 4 Note 4
ps ps ps ps MHz ns ns ns ps ps ps
TIDELAYPAT_JIT
Pattern dependent period jitter in delay chain for random data pattern (PRBS 23).(2) Pattern dependent period jitter in delay chain for random data pattern (PRBS 23).(3)
TIODELAY_CLK_MAX TIODCCK_CE / TIODCKC_CE TIODCK_INC/ TIODCKC_INC TIODCCK_RST/ TIODCKC_RST TIODDO_T TIODDO_IDATAIN TIODDO_ODATAIN
Maximum frequency of CLK input to IODELAY CE pin Setup/Hold with respect to CK INC pin Setup/Hold with respect to CK RST pin Setup/Hold with respect to CK TSCONTROL delay to MUXE/MUXF switching and through IODELAY Propagation delay through IODELAY Propagation delay through IODELAY
Notes: 1. When HIGH_PERFORMANCE mode is set to TRUE or FALSE. 2. When HIGH_PERFORMANCE mode is set to TRUE 3. When HIGH_PERFORMANCE mode is set to FALSE. 4. Delay depends on IODELAY tap setting. See TRACE report for actual values.
CLB Switching Characteristics
Table 46: CLB Switching Characteristics
Symbol
Combinatorial Delays TILO An - Dn LUT address to A An - Dn LUT address to AMUX/CMUX An - Dn LUT address to BMUX_A TITO TAXA TAXB TAXC TAXD TBXB An - Dn inputs to A - D Q outputs AX inputs to AMUX output AX inputs to BMUX output AX inputs to CMUX output AX inputs to DMUX output BX inputs to BMUX output 0.08 0.23 0.37 0.79 0.42 0.47 0.52 0.55 0.39 0.09 0.26 0.42 0.91 0.48 0.53 0.60 0.63 0.45 ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max
Description
Speed Grade -2 -1
Units
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 33
Virtex-6 CXT Family Data Sheet Table 46: CLB Switching Characteristics (Cont'd)
Symbol
TBXD TCXB TCXD TDXD TOPCYA TOPCYB TOPCYC TOPCYD TAXCY TBXCY TCXCY TDXCY TBYP TCINA TCINB TCINC TCIND Sequential Delays TCKO TDICK/TCKDI TCECK_CLB/ TCKCE_CLB TSRCK/TCKSR TCINCK/TCKCIN Set/Reset TSRMIN TRQ TCEO FTOG SR input minimum pulse width Delay from SR input to AQ - DQ flip-flops Delay from CE input to AQ - DQ flip-flops Toggle frequency (for export control) 0.97 0.68 0.59 1098.00 0.97 0.78 0.67 1098.00 ns, Min ns, Max ns, Max MHz Clock to AQ - DQ outputs 0.39 0.44 ns, Max
www..com
Description
BX inputs to DMUX output CX inputs to CMUX output CX inputs to DMUX output DX inputs to DMUX output An input to COUT output Bn input to COUT output Cn input to COUT output Dn input to COUT output AX input to COUT output BX input to COUT output CX input to COUT output DX input to COUT output CIN input to COUT output CIN input to AMUX output CIN input to BMUX output CIN input to CMUX output CIN input to DMUX output
Speed Grade -2
0.50 0.34 0.40 0.38 0.42 0.42 0.35 0.33 0.33 0.28 0.20 0.19 0.08 0.28 0.29 0.30 0.33
-1
0.58 0.38 0.45 0.44 0.49 0.48 0.40 0.38 0.38 0.32 0.23 0.22 0.09 0.32 0.34 0.34 0.38
Units
ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max
Setup and Hold Times of CLB Flip-Flops Before/After Clock CLK A - D input to CLK on A - D Flip Flops CE input to CLK on A - D Flip Flops SR input to CLK on A - D Flip Flops CIN input to CLK on A - D Flip Flops 0.43/0.19 0.32/-0.02 0.51/-0.09 0.23/0.15 0.49/0.22 0.37/-0.02 0.59/-0.09 0.27/0.17 ns, Min ns, Min ns, Min ns, Min
Notes: 1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. 2. These items are of interest for Carry Chain applications.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 34
Virtex-6 CXT Family Data Sheet
CLB Distributed RAM Switching Characteristics (SLICEM Only)
Table 47: CLB Distributed RAM Switching Characteristics
Symbol
Sequential Delays TSHCKO TSHCKO_1 TDS/TDH TAS/TAH TWS/TWH TCECK/TCKCE Clock CLK TMPW TMCP Minimum pulse width Minimum clock period 1.04 2.08 Clock to A - B outputs Clock to AMUX - BMUX outputs 1.36 1.71
www..com
Description
Speed Grade -2 -1
Units
1.56 1.96
ns, Max ns, Max
Setup and Hold Times Before/After Clock CLK A - D inputs to CLK Address An inputs to clock WE input to clock CE input to CLK 0.87/0.22 0.27/0.70 0.40/-0.01 0.41/-0.02 1.00/0.26 0.31/0.80 0.45/0.00 0.47/-0.01 ns, Min ns, Min ns, Min ns, Min
1.20 2.40
ns, Min ns, Min
Notes: 1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time. 2. TSHCKO also represents the CLK to XMUX output. Refer to TRACE report for the CLK to XMUX path.
CLB Shift Register Switching Characteristics (SLICEM Only)
Table 48: CLB Shift Register Switching Characteristics
Symbol
Sequential Delays TREG TREG_MUX TREG_M31 TWS/TWH TCECK/TCKCE TDS/TDH Clock CLK TMPW Minimum pulse width 0.89 1.02 ns, Min Clock to A - D outputs Clock to AMUX - DMUX output Clock to DMUX output via M31 output 1.58 1.93 1.55 1.82 2.22 1.78 ns, Max ns, Max ns, Max
Description
Speed Grade -2 -1
Units
Setup and Hold Times Before/After Clock CLK WE input CE input to CLK A - D inputs to CLK 0.08/-0.01 0.09/-0.02 0.93/0.24 0.09/0.00 0.11/-0.01 1.07/0.28 ns, Min ns, Min ns, Min
Notes: 1. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values cannot be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 35
Virtex-6 CXT Family Data Sheet
Block RAM and FIFO Switching Characteristics
Table 49: Block RAM and FIFO Switching Characteristics
Symbol
Block RAM and FIFO Clock-to-Out Delays TRCKO_DO and TRCKO_DO_REG(1) Clock CLK to DOUT output (without output register)(2)(3) Clock CLK to DOUT output (with output TRCKO_DO_ECC and TRCKO_DO_ECC_REG TRCKO_CASC and TRCKO_CASC_REG TRCKO_FLAGS TRCKO_POINTERS TRCKO_RDCOUNT TRCKO_WRCOUNT TRCKO_SDBIT_ECC and TRCKO_SDBIT_ECC_REG TRCKO_PARITY_ECC TRCKO_RDADDR_ECC and TRCKO_RDADDR_ECC_REG Clock CLK to DOUT output with ECC (without output register)(2)(3) Clock CLK to DOUT output with ECC (with output register)(4)(5) Clock CLK to DOUT output with Cascade (without output register)(2) Clock CLK to DOUT output with Cascade (with output register)(4) Clock CLK to FIFO flags outputs(6) outputs(7) register)(4)(5)
www..com
Description
Speed Grade -2 -1
Units
2.08 0.75 3.30 0.86 3.18 1.58 0.91 0.91 1.09 1.09 0.76 2.84 1.48 1.06 0.90 0.92
2.39 0.86 3.79 0.98 3.65 1.81 1.05 1.05 1.25 1.25 0.87 3.26 1.70 1.21 1.03 1.06
ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max ns, Max
Clock CLK to FIFO pointers
Clock CLK to FIFO Read Counter Clock CLK to FIFO Write Counter Clock CLK to BITERR (with output register) Clock CLK to BITERR (without output register) Clock CLK to ECCPARITY in standard ECC mode Clock CLK to ECCPARITY in ECC encode only mode Clock CLK to RDADDR output with ECC (without output register) Clock CLK to RDADDR output with ECC (with output register) ADDR inputs(8) DIN inputs(9) mode(9) only(9)
Setup and Hold Times Before/After Clock CLK TRCCK_ADDR/TRCKC_ADDR TRDCK_DI/TRCKD_DI TRDCK_DI_ECC/TRCKD_DI_ECC 0.62/0.32 1.11/0.34 0.59/0.34 0.85/0.34 1.02/0.34 0.72/0.37 1.28/0.39 0.68/0.39 0.97/0.39 1.17/0.39 ns, Min ns, Min ns, Min ns, Min ns, Min ns, Min 1.20/0.29 0.41/0.30 0.22/0.31 0.28/0.26 0.41/0.27 0.52/0.22 0.55/0.30 0.55/0.30 1.38/0.33 0.47/0.34 0.25/0.35 0.32/0.29 0.47/0.31 0.60/0.25 0.64/0.34 0.63/0.34 ns, Min ns, Min ns, Min ns, Min ns, Min ns, Min ns, Min ns, Min
DIN inputs with block RAM ECC in standard DIN inputs with block RAM ECC encode DIN inputs with FIFO ECC in standard DIN inputs with FIFO ECC encode
mode(9)
only(9)
TRCCK_CLK/TRCKC_CLK TRCCK_RDEN/TRCKC_RDEN TRCCK_REGCE/TRCKC_REGCE TRCCK_RSTREG/TRCKC_RSTREG TRCCK_RSTRAM/TRCKC_RSTRAM TRCCK_WE/TRCKC_WE TRCCK_WREN/TRCKC_WREN TRCCK_RDEN/TRCKC_RDEN Reset Delays TRCO_FLAGS TRCCK_RST/TRCKC_RST
Inject single/double bit error in ECC mode Block RAM Enable (EN) input CE input of output register Synchronous RSTREG input Synchronous RSTRAM input Write Enable (WE) input (Block RAM only) WREN FIFO inputs RDEN FIFO inputs Reset RST to FIFO Flags/Pointers(10) FIFO reset timing(11)
1.10
1.27
ns, Max ns, Min
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 36
Virtex-6 CXT Family Data Sheet Table 49: Block RAM and FIFO Switching Characteristics (Cont'd)
Symbol
Maximum Frequency FMAX FMAX_CASCADE FMAX_FIFO FMAX_ECC Notes:
TRACE will report all of these parameters as TRCKO_DO. TRCKO_DOR includes TRCKO_DOW, TRCKO_DOPR, and TRCKO_DOPW as well as the B port equivalent timing parameters. These parameters also apply to synchronous FIFO with DO_REG = 0. TRCKO_DO includes TRCKO_DOP as well as the B port equivalent timing parameters. These parameters also apply to multirate (asynchronous) and synchronous FIFO with DO_REG = 1. TRCKO_FLAGS includes the following parameters: TRCKO_AEMPTY, TRCKO_AFULL, TRCKO_EMPTY, TRCKO_FULL, TRCKO_RDERR, TRCKO_WRERR. TRCKO_POINTERS includes both TRCKO_RDCOUNT and TRCKO_WRCOUNT. The ADDR setup and hold must be met when EN is asserted (even when WE is deasserted). Otherwise, block RAM data corruption is possible. 9. TRCKO_DI includes both A and B inputs as well as the parity inputs of A and B. 10. TRCO_FLAGS includes the following flags: AEMPTY, AFULL, EMPTY, FULL, RDERR, WRERR, RDCOUNT, and WRCOUNT. 11. The FIFO reset must be asserted for at least three positive clock edges. 12. In Read First mode, the maximum frequencies are 50 MHz lower than specified in this table. 1. 2. 3. 4. 5. 6. 7. 8.
www..com
Description
Speed Grade -2 -1
Units
Block RAM(12) Block RAM in cascade configuration(12) FIFO in all modes Block RAM and FIFO in ECC configuration
400 400 400 325
350 347 350 282
MHz MHz MHz MHz
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 37
Virtex-6 CXT Family Data Sheet
DSP48E1 Switching Characteristics
Table 50: DSP48E1 Switching Characteristics
Symbol Description
www..com
Speed Grade -2 -1
Units
Setup and Hold Times of Data/Control Pins to the Input Register Clock
TDSPDCK_{A, ACIN; B, BCIN}_{AREG; BREG}/ TDSPCKD_{A, ACIN; B, BCIN}_{AREG; BREG} TDSPDCK_C_CREG/TDSPCKD_C_CREG TDSPDCK_D_DREG/TDSPCKD_D_DREG TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/ TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT
{A, ACIN, B, BCIN} input to {A, B} register CLK C input to C register CLK D input to D register CLK
0.28/0.34 0.16/0.24
0.32/0.39 0.18/0.27
ns ns ns
Setup and Hold Times of Data Pins to the Pipeline Register Clock
{A, ACIN, B, BCIN} input to M register CLK 3.22/-0.04 3.70/-0.04 ns ns
TDSPDCK_{A, D}_ADREG/ TDSPCKD_{A, D}_ADREG {A, D} input to AD register CLK
Setup and Hold Times of Data/Control Pins to the Output Register Clock
TDSPDCK_{A, ACIN, B, BCIN}_PREG_MULT/ TDSPCKD_{A, ACIN, B, BCIN}_PREG_MULT TDSPDCK_D_DREG_MULT/ TDSPCKD_D_DREG_MULT TDSPDCK_{A, ACIN, B, BCIN}_PREG/ TDSPCKD_{A, ACIN, B, BCIN}_PREG TDSPDCK_C_PREG/ TDSPCKD_C_PREG TDSPDCK_{PCIN, CARRYCASCIN, MULTSIGNIN}_PREG/ TDSPCKD_{PCIN,
CARRYCASCIN, MULTSIGNIN}_PREG
{A, ACIN, B, BCIN} input to P register CLK using multiplier D input to P register CLK {A, ACIN, B, BCIN} input to P register CLK not using multiplier C input to P register CLK {PCIN, CARRYCASCIN, MULTSIGNIN} input to P register CLK
4.94/-0.04 5.68/-0.04
ns ns
1.89/-0.04 2.18/-0.04 1.64/0.04 1.89/0.05
ns ns ns
1.56/-0.04 1.79/-0.05
Setup and Hold Times of the CE Pins
TDSPDCK_{CEA; CEB}_{AREG; BREG}/ TDSPCKD_{CEA; CEB}_{AREG; BREG} TDSPDCK_CEC_CREG/ TDSPCKD_CEC_CREG TDSPDCK_CED_DREG/ TDSPCKD_CED_DREG TDSPDCK_CEM_MREG/ TDSPCKD_CEM_MREG TDSPDCK_CEP_PREG/ TDSPCKD_CEP_PREG
Setup and Hold Times of the RST Pins
{CEA; CEB} input to {A; B} register CLK CEC input to C register CLK CED input to D register CLK CEM input to M register CLK CEP input to P register CLK
0.12/0.25 0.13/0.23
0.14/0.29 0.16/0.27
ns ns ns
0.15/0.25 0.38/0.03
0.18/0.28 0.44/0.03
ns ns
TDSPDCK_{RSTA; RSTB}_{AREG; BREG}/ TDSPCKD_{RSTA; RSTB}_{AREG; BREG}
TDSPDCK_RSTC_CREG/ TDSPCKD_RSTC_CREG TDSPDCK_RSTD_DREG/ TDSPCKD_RSTD_DREG TDSPDCK_RSTM_MREG/ TDSPCKD_RSTM_MREG TDSPDCK_RSTP_PREG/ TDSPCKD_RSTP_PREG
{RSTA, RSTB} input to {A, B} register CLK RSTC input to C register CLK RSTD input to D register CLK RSTM input to M register CLK RSTP input to P register CLK
0.38/0.22 0.23/0.09
0.43/0.25 0.27/0.11
ns ns ns
0.26/0.30 0.33/0.05
0.30/0.35 0.38/0.06
ns ns
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 38
Virtex-6 CXT Family Data Sheet Table 50: DSP48E1 Switching Characteristics (Cont'd)
Symbol Combinatorial Delays from Input Pins to Output Pins Description
www..com
Speed Grade -2 -1
Units
TDSPDO_{A, B}_{P, CARRYOUT}_MULT TDSPDO_D_{P, CARRYOUT}_MULT TDSPDO_{A, B}_{P, CARRYOUT} TDSPDO_{C, CARRYIN}_{P, CARRYOUT} TDSPDO_{A; B}_{ACOUT; BCOUT} TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
{A, B} input to {P, CARRYOUT} output using multiplier D input to {P, CARRYOUT} output using multiplier {A, B} input to {P, CARRYOUT} output not using multiplier {C, CARRYIN} input to {P, CARRYOUT} output
5.08
5.84
ns ns
2.07 1.83
2.38 2.10
ns ns
Combinatorial Delays from Input Pins to Cascading Output Pins
{A, B} input to {ACOUT, BCOUT} output {A, B} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier D input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier {A, B} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier {C, CARRYIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 2.19 1.95 2.52 2.25 0.65 5.24 0.75 6.03 ns ns ns ns ns
TDSPDO_D_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
TDSPDO_{A, B}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}
TDSPDO__{C, CARRYIN}_{PCOUT,
CARRYCASCOUT,MULTSIGNOUT}
Combinatorial Delays from Cascading Input Pins to All Output Pins
TDSPDO_{ACIN, BCIN}_{P, CARRYOUT}_MULT TDSPDO_{ACIN, BCIN}_{P, CARRYOUT TDSPDO_{ACIN; BCIN}_{ACOUT; BCOUT} TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MULT
{ACIN, BCIN} input to {P, CARRYOUT} output using multiplier {ACIN, BCIN} input to {P, CARRYOUT} output not using multiplier {ACIN, BCIN} input to {ACOUT, BCOUT} output {ACIN, BCIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier {ACIN, BCIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier {PCIN, CARRYCASCIN, MULTSIGNIN} input to {P, CARRYOUT} output {PCIN, CARRYCASCIN, MULTSIGNIN} input to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output
4.97 1.92 0.49 5.10
5.72 2.21 0.57 5.86
ns ns ns ns
TDSPDO_{ACIN, BCIN}_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}
2.05
2.35
ns
TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_
{P, CARRYOUT}
1.60 1.72
1.83 1.98
ns ns
TDSPDO_{PCIN, CARRYCASCIN, MULTSIGNIN}_
{PCOUT, CARRYCASCOUT, MULTSIGNOUT}
Clock to Outs from Output Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_PREG TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_PREG
CLK (PREG) to {P, CARRYOUT} output CLK (PREG) to {CARRYCASCOUT, PCOUT, MULTSIGNOUT} output
0.50 0.66
0.57 0.76
ns ns
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 39
Virtex-6 CXT Family Data Sheet Table 50: DSP48E1 Switching Characteristics (Cont'd)
Symbol Clock to Outs from Pipeline Register Clock to Output Pins Description
www..com
Speed Grade -2 -1
Units
TDSPCKO_{P, CARRYOUT}_MREG TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_MREG
CLK (MREG) to {P, CARRYOUT} output CLK (MREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output CLK (ADREG) to {P, CARRYOUT} output CLK (ADREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output
2.30 2.43
2.65 2.79
ns ns ns ns
TDSPCKO_{P, CARRYOUT}_ADREG_MULT TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_ADREG_MULT
Clock to Outs from Input Register Clock to Output Pins
TDSPCKO_{P, CARRYOUT}_{AREG, BREG}_MULT TDSPCKO_{P, CARRYOUT}_{AREG, BREG} TDSPCKO_{P, CARRYOUT}_CREG TDSPCKO_{P, CARRYOUT}_DREG_MULT TDSPCKO_{ACOUT; BCOUT}_{AREG; BREG} TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_{AREG, BREG}_MULT
CLK (AREG, BREG) to {P, CARRYOUT} output using multiplier CLK (AREG, BREG) to {P, CARRYOUT} output not using multiplier CLK (CREG) to {P, CARRYOUT} output CLK (DREG) to {P, CARRYOUT} output
5.36 2.27 2.27
6.16 2.61 2.61
ns ns ns ns
Clock to Outs from Input Register Clock to Cascading Output Pins
CLK (AREG, BREG) to {P, CARRYOUT} output CLK (AREG, BREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier CLK (AREG, BREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output not using multiplier CLK (DREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output using multiplier CLK (CREG) to {PCOUT, CARRYCASCOUT, MULTSIGNOUT} output 2.40 2.76 0.89 5.49 1.02 6.31 ns ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_{AREG, BREG}
2.40
2.76
ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_DREG_MULT
ns ns
TDSPCKO_{PCOUT, CARRYCASCOUT,
MULTSIGNOUT}_CREG
Maximum Frequency
FMAX FMAX_PATDET FMAX_MULT_NOMREG FMAX_MULT_NOMREG_PATDET FMAX_PREADD_MULT_NOADREG FMAX_PREADD_MULT_NOADREG_PATDET FMAX_NOPIPELINEREG FMAX_NOPIPELINEREG_PATDET
With all registers used With pattern detector Two register multiply without MREG Two register multiply without MREG with pattern detect Without ADREG Without ADREG with pattern detect Without pipeline registers (MREG, ADREG) Without pipeline registers (MREG, ADREG) with pattern detect
350 350 262 248
275 275 227 215
MHz MHz MHz MHz MHz MHz MHz MHz
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 40
Virtex-6 CXT Family Data Sheet
Configuration Switching Characteristics
Table 51: Configuration Switching Characteristics
Symbol
Power-up Timing Characteristics TPL TPOR TICCK TPROGRAM TDCCK/TCCKD TDSCCK/TSCCKD TCCO FMCCK FMCCKTOL FMSCCK TSMDCCK/TSMCCKD TSMCSCCK/TSMCCKCS TSMCCKW/TSMWCCK TSMCKCSO TSMCO TSMCKBY FSMCCK FRBCCK FMCCKTOL TTAPTCK/TTCKTAP TTCKTDO FTCK FTCKB TBPICCO(4) TBPIDCC/TBPICCD TINITADDR TSPIDCC/TSPIDCCD TSPICCM Program Latency Power-on-Reset CCLK (output) delay Program Pulse Width
www..com
Description
Speed Grade -2 -1
Units
3
ms, Max ms, Min/Max ns, Min
250
ns, Min
Master/Slave Serial Mode Programming Switching(1) DIN Setup/Hold, slave mode DIN Setup/Hold, master mode DOUT Maximum Frequency, master mode with respect to nominal CCLK. Frequency Tolerance, master mode with respect to nominal CCLK. Slave mode external CCLK 100 100 4.0/0.0 4.0/0.0 6 100 ns, Min ns, Min ns, Max MHz, Max % MHz
SelectMAP Mode Programming Switching(1) SelectMAP Data Setup/Hold CS_B Setup/Hold RDWR_B Setup/Hold CSO_B clock to out (330 pull-up resistor required) CCLK to DATA out in readback CCLK to BUSY out in readback Maximum Frequency with respect to nominal CCLK. Maximum Readback Frequency with respect to nominal CCLK Frequency Tolerance with respect to nominal CCLK. 100 4.0/0.0 4.0/0.0 9.0/0.0 7 8 6 100 ns, Min ns, Min ns, Min ns, Min ns, Max ns, Max MHz, Max MHz, Max %
Boundary-Scan Port Timing Specifications TMS and TDI Setup time before TCK/ Hold time after TCK TCK falling edge to TDO output valid Maximum configuration TCK clock frequency Maximum boundary-scan TCK clock frequency 66 66 2.5/2.0 6 66 66 ns, Min ns, Max MHz, Max MHz, Max
BPI Master Flash Mode Programming Switching ADDR[25:0], RS[1:0], FCS_B, FOE_B, FWE_B outputs valid after CCLK rising edge Setup/Hold on D[15:0] data input pins Minimum period of initial ADDR[25:0] address cycles 4 4.0/0.0 3 ns ns CCLK cycles
SPI Master Flash Mode Programming Switching DIN Setup/Hold before/after the rising CCLK edge MOSI clock to out 2.5/0.0 4 ns ns
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 41
Virtex-6 CXT Family Data Sheet Table 51: Configuration Switching Characteristics (Cont'd)
Symbol
TSPICCFC TFSINIT/TFSINITH CCLK Output (Master Modes) TMCCKL TMCCKH CCLK Input (Slave Modes) TSCCKL TSCCKH FDCK TMMCMDCK_DADDR/ TMMCMCKD_DADDR TMMCMDCK_DI/TMMCMCKD_DI TMMCMDCK_DEN/TMMCMCKD_DEN TMMCMDCK_DWE/TMMCMCKD_DWE TMMCMCKO_DO TMMCMCKO_DRDY Slave CCLK clock minimum Low time Slave CCLK clock minimum High time 2.5 2.5 ns, Min ns, Min Master CCLK clock minimum duty cycle Low Master CCLK clock minimum duty cycle High 45 55 %, Min %, Max FCS_B clock to out FS[2:0] to INIT_B rising edge Setup and Hold
www..com
Description
Speed Grade -2 -1
Units
ns s
Dynamic Reconfiguration Port (DRP) for MMCM Before and After DCLK Maximum frequency for DCLK DADDR Setup/Hold DI Setup/Hold DEN Setup/Hold time DWE Setup/Hold time CLK to out of DO(3) CLK to out of DRDY 200 200 MHz ns ns ns ns ns ns
1.63/0.00 1.63/0.00 1.63/0.00 1.63/0.00 1.63/0.00 1.63/0.00 1.63/0.00 1.63/0.00 3.64 0.38 3.64 0.38
Notes: 1. Maximum frequency and setup/hold timing parameters are for 2.5V configuration voltage. 2. To support longer delays in configuration, use the design solutions described in Virtex-6 FPGA SelectIO Resources User Guide. 3. DO will hold until next DRP operation. 4. Only during configuration, the last edge is determined by a weak pull-up/pull-down resistor in the I/O.
Clock Buffers and Networks
Table 52: Global Clock Switching Characteristics (Including BUFGCTRL)
Symbol
TBCCCK_CE/TBCCKC_CE(1) TBCCCK_S/TBCCKC_S(1)
Description
CE pins Setup/Hold S pins Setup/Hold All All
Devices
Speed Grade -2
0.15/0.00 0.15/0.00 0.09 0.09 0.09 0.09
Units
ns ns ns ns ns ns
-1
0.15/0.00 0.15/0.00 0.09 0.09 0.09 0.09
XC6VCX75T TBCCKO_O(2) BUFGCTRL delay from I0/I1 to O XC6VCX130T XC6VCX195T XC6VCX240T Maximum Frequency XC6VCX75T FMAX Global clock tree (BUFG) XC6VCX130T XC6VCX195T XC6VCX240T
700 700 700 700
700 700 700 700
MHz MHz MHz MHz
Notes: 1. TBCCCK_CE and TBCCKC_CE must be satisfied to assure glitch-free operation of the global clock when switching between clocks. These parameters do not apply to the BUFGMUX_VIRTEX4 primitive that assures glitch-free operation. The other global clock setup and hold times are optional; only needing to be satisfied if device operation requires simulation matches on a cycle-for-cycle basis when switching between clocks.
2.
TBGCKO_O (BUFG delay from I0 to O) values are the same as TBCCKO_O values.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 42
Virtex-6 CXT Family Data Sheet
Table 53: Input/Output Clock Switching Characteristics (BUFIO)
Symbol
TBIOCKO_O Maximum Frequency FMAX I/O clock tree (BUFIO) 710
www..com
Description -2
Clock to out delay from I to O
Speed Grade -1
0.19
Units
ns
0.19
710
MHz
Table 54: Regional Clock Switching Characteristics (BUFR)
Symbol Description Devices
XC6VCX75T TBRCKO_O Clock to out delay from I to O XC6VCX130T XC6VCX195T XC6VCX240T XC6VCX75T TBRCKO_O_BYP Clock to out delay from I to O with Divide Bypass attribute set XC6VCX130T XC6VCX195T XC6VCX240T TBRDO_O Maximum Frequency FMAX Regional clock tree (BUFR) All 300 300 MHz Propagation delay from CLR to O All
Speed Grade -2
0.75 0.75 0.75 0.75 0.37 0.37 0.37 0.37 0.83
Units
ns ns ns ns ns ns ns ns ns
-1
0.75 0.75 0.75 0.75 0.37 0.37 0.37 0.37 0.83
Table 55: Horizontal Clock Buffer Switching Characteristics (BUFH)
Symbol
TBHCKO_O TBHCCK_CE/TBHCKC_CE Maximum Frequency FMAX Horizontal clock buffer (BUFH) All 700 700 MHz
Description
BUFH delay from I to O CE pin Setup and Hold All All
Devices
Speed Grade -2
0.13 0.05/0.05
Units
ns ns
-1
0.13 0.05/0.05
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 43
Virtex-6 CXT Family Data Sheet
MMCM Switching Characteristics
Table 56: MMCM Specification
Symbol
FINMAX FINMIN FINJITTER FINDUTY
www..com
Description -2
Maximum Input Clock Frequency Minimum Input Clock Frequency Maximum Input Clock Period Jitter Allowable Input Duty Cycle: 10--49 MHz Allowable Input Duty Cycle: 50--199 MHz Allowable Input Duty Cycle: 200--399 MHz Allowable Input Duty Cycle: 400--499 MHz Allowable Input Duty Cycle: >500 MHz 700 10
Speed Grade -1
700 10
Units
MHz MHz
< 20% of clock input period or 1 ns Max 25/75 30/70 35/65 40/60 45/55 0.01 450 400 1200 1.00 4.00 0.12 0.01 450 400 1200 1.00 4.00 0.12 Note 1 % % % % % MHz MHz MHz MHz MHz MHz ps
FMIN_PSCLK FMAX_PSCLK FVCOMIN FVCOMAX FBANDWIDTH TSTATPHAOFFSET TOUTJITTER TOUTDUTY TLOCKMAX FOUTMAX FOUTMIN TEXTFDVAR RSTMINPULSE FPFDMAX FPFDMIN TFBDELAY TMMCMDCK_PSEN/ TMMCMCKD_PSEN TMMCMDCK_PSINCDEC/ TMMCMCKD_PSINCDEC TMMCMCKO_PSDONE
Minimum Dynamic Phase Shift Clock Frequency Maximum Dynamic Phase Shift Clock Frequency Minimum MMCM VCO Frequency Maximum MMCM VCO Frequency Low MMCM Bandwidth at High MMCM Bandwidth at Jitter(2) Precision(3) Typical(1) Typical(1)
Static Phase Offset of the MMCM Outputs MMCM Output
MMCM Output Clock Duty Cycle MMCM Maximum Lock Time
0.20 100 700 3.13
0.20 100 700 3.13
ps s MHz MHz
MMCM Maximum Output Frequency MMCM Minimum Output Frequency(4)
External Clock Feedback Variation Minimum Reset Pulse Width Maximum Frequency at the Phase Frequency Detector Minimum Frequency at the Phase Frequency Detector Maximum Delay in the Feedback Path Setup and Hold of Phase Shift Enable Setup and Hold of Phase Shift Increment/Decrement Phase Shift Clock-to-Out of PSDONE
< 20% of clock input period or 1 ns Max 5.00 550 10.00 5.00 550 10.00 ns MHz MHz
3 ns Max or one CLKIN cycle 1.04/0.00 1.04/0.00 0.38 1.04/0.00 1.04/0.00 0.38 ns ns ns
Notes: 1. The MMCM does not filter typical spread-spectrum input clocks because they are usually far below the bandwidth filter frequencies. 2. Values for this parameter are available in the Architecture Wizard. 3. Includes global clock buffer. 4. Calculated as FVCO/128 assuming output duty cycle is 50%.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 44
Virtex-6 CXT Family Data Sheet
Virtex-6 CXT Device Pin-to-Pin Output Parameter Guidelines
www..com
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 57. Values are expressed in nanoseconds unless otherwise noted. Table 57: Global Clock Input to Output Delay Without MMCM
Symbol Description Device Speed Grade -2
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, without MMCM. TICKOF Global Clock input and OUTFF without MMCM XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T 5.84 5.95 6.08 6.08 5.84 5.95 6.08 6.08 ns ns ns ns
Units
-1
Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net.
Table 58: Global Clock Input to Output Delay With MMCM
Symbol Description Device Speed Grade -2
LVCMOS25 Global Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM. TICKOFMMCMGC Global Clock Input and OUTFF with MMCM XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T 4.45 4.56 4.56 4.56 4.45 4.56 4.56 4.56 ns ns ns ns
Units
-1
Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. 2. MMCM output jitter is already included in the timing calculation.
Table 59: Clock-Capable Clock Input to Output Delay With MMCM
Symbol Description Device Speed Grade -2
LVCMOS25 Clock-capable Clock Input to Output Delay using Output Flip-Flop, 12mA, Fast Slew Rate, with MMCM. TICKOFMMCMCC Clock-capable Clock Input and OUTFF with MMCM XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T 4.32 4.43 4.43 4.43 4.32 4.43 4.43 4.43 ns ns ns ns
Units
-1
Notes: 1. Listed above are representative values where one global clock input drives one vertical clock line in each accessible column, and where all accessible IOB and CLB flip-flops are clocked by the global clock net. 2. MMCM output jitter is already included in the timing calculation.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 45
Virtex-6 CXT Family Data Sheet
Virtex-6 CXT Device Pin-to-Pin Input Parameter Guidelines
www..com
All devices are 100% functionally tested. The representative values for typical pin locations and normal clock loading are listed in Table 60. Values are expressed in nanoseconds unless otherwise noted. Table 60: Global Clock Input Setup and Hold Without MMCM
Symbol Description Device -2
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) TPSFD/ TPHFD Full Delay (Legacy Delay or Default Delay) Global Clock Input and IFF(2) without MMCM XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T 2.03/-0.08 2.26/-0.07 2.26/-0.10 2.26/-0.10 2.03/-0.08 2.26/-0.07 2.26/-0.10 2.26/-0.10 ns ns ns ns
Speed Grade -1
Units
Notes: 1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. 2. IFF = Input Flip-Flop or Latch 3. A Zero "0" Hold Time listing indicates no hold time or a negative hold time. Negative values can not be guaranteed "best-case", but if a "0" is listed, there is no positive hold time.
Table 61: Global Clock Input Setup and Hold With MMCM
Symbol Description Device -2
Input Setup and Hold Time Relative to Global Clock Input Signal for LVCMOS25 Standard.(1) TPSMMCMGC/ TPHMMCMGC No Delay Global Clock Input and IFF(2) with MMCM XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T 0.12/1.31 0.12/1.42 0.13/1.43 0.13/1.43 0.12/1.31 0.12/1.42 0.13/1.43 0.13/1.43 ns ns ns ns
Speed Grade -1
Units
Notes: 1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. 2. IFF = Input Flip-Flop or Latch 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
Table 62: Clock-Capable Clock Input Setup and Hold With MMCM
Symbol Description Device -2
Input Setup and Hold Time Relative to Clock-capable Clock Input Signal for LVCMOS25 Standard.(1) TPSMMCMCC/ TPHMMCMCC No Delay Clock-capable Clock Input and IFF(2) with MMCM XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T 0.19/1.18 0.19/1.29 0.20/1.30 0.20/1.30 0.19/1.18 0.19/1.29 0.20/1.30 0.20/1.30 ns ns ns ns
Speed Grade -1
Units
Notes: 1. Setup and Hold times are measured over worst case conditions (process, voltage, temperature). Setup time is measured relative to the Global Clock input signal using the slowest process, highest temperature, and lowest voltage. Hold time is measured relative to the Global Clock input signal using the fastest process, lowest temperature, and highest voltage. 2. IFF = Input Flip-Flop or Latch 3. Use IBIS to determine any duty-cycle distortion incurred using various standards.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 46
Virtex-6 CXT Family Data Sheet
Clock Switching Characteristics
www..com
The parameters in this section provide the necessary values for calculating timing budgets for Virtex-6 FPGA clock transmitter and receiver data-valid windows. Table 63: Duty Cycle Distortion and Clock-Tree Skew
Symbol
TDCD_CLK TCKSKEW
Description
Global Clock Tree Duty Cycle Distortion (1) Global Clock Tree Skew (2)
Device
All XC6VCX75T XC6VCX130T XC6VCX195T XC6VCX240T
Speed Grade -2 -1
Units
ns
0.17 0.28 0.29 0.29
0.17 0.28 0.29 0.29
ns ns ns ns ns ns ns ns ns ns
TDCD_BUFIO TDCD_BUFH TBUFIOSKEW TBUFIOSKEW2 TBUFHSKEW TDCD_BUFR
I/O clock tree duty cycle distortion Horizontal clock buffer duty cycle distortion I/O clock tree skew across one clock region I/O clock tree skew across three clock regions Horizontal clock buffer skew across one clock region Regional clock tree duty cycle distortion
All All All All All All
Notes: 1. These parameters represent the worst-case duty cycle distortion observable at the pins of the device using LVDS output buffers. For cases where other I/O standards are used, IBIS can be used to calculate any additional duty cycle distortion that might be caused by asymmetrical rise/fall times. 2. The TCKSKEW value represents the worst-case clock-tree skew observable between sequential I/O elements. Significantly less clock-tree skew exists for I/O registers that are close to each other and fed by the same or adjacent clock-tree branches. Use the Xilinx FPGA_Editor and Timing Analyzer tools to evaluate clock skew specific to your application.
Table 64: Package Skew
Symbol
TPKGSKEW Package
Description
Skew(1)
Device
XC6VCX75T XC6VCX130T
Package
FF484 FF784 FF484 FF784 FF1156
Value
Units
ps ps ps ps ps ps ps
XC6VCX195T XC6VCX240T
FF784 FF1156 FF784 FF1156 146 182
ps ps
Notes: 1. These values represent the worst-case skew between any two SelectIO resources in the package: shortest flight time to longest flight time from Pad to Ball (7.0 ps per mm). 2. Package trace length information is available for these device/package combinations. This information can be used to deskew the package.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 47
Virtex-6 CXT Family Data Sheet
Table 65: Sample Window
Symbol
TSAMP TSAMP_BUFIO
www..com
Description
Sampling Error at Receiver Pins(1) Sampling Error at Receiver Pins using BUFIO(2)
Device -2
All All
Speed Grade -1
Units
ps ps
Notes: 1. This parameter indicates the total sampling error of Virtex-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the MMCM to capture the DDR input registers' edges of operation. These measurements include: - CLK0 MMCM jitter - MMCM accuracy (phase offset) - MMCM phase shift resolution These measurements do not include package or clock tree skew. 2. This parameter indicates the total sampling error of Virtex-6 FPGA DDR input registers, measured across voltage, temperature, and process. The characterization methodology uses the BUFIO clock network and IODELAY to capture the DDR input registers' edges of operation. These measurements do not include package or clock tree skew.
Table 66: Pin-to-Pin Setup/Hold and Clock-to-Out
Symbol Description -2
Data Input Setup and Hold Times Relative to a Forwarded Clock Input Pin Using BUFIO TPSCS/TPHCS TICKOFCS Setup/Hold of I/O clock ns
Speed Grade -1
Units
Pin-to-Pin Clock-to-Out Using BUFIO Clock-to-Out of I/O clock ns
Revision History
The following table shows the revision history for this document:
Date
07/08/09 02/05/10
Version
1.0 1.1 Initial Xilinx release.
Description of Revisions
Removed Figure 11: Placement Diagram for the FF1156 Package (5 of 5) from page 11 as there are only 16 GTX transcievers in the FF1156 package. Corrected the placement diagrams in Figure 2 through Figure 10.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN ("PRODUCTS") ARE SUBJECT TO THE TERMS AND CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO APPLICABLE LAWS AND REGULATIONS.
DS153 (v1.1) February 5, 2010 Advance Product Specification
www.xilinx.com 48


▲Up To Search▲   

 
Price & Availability of XC6VCX195T

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X